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SUMMARY

Analytic methods are developed for calculating blade loads and shaft-
transmitted vibratory forces in stiff bladed hingeless rotors operating at

advance ratios from 4 = .3 to p = 2.0.

Calculated shaft harmonic moments compared well with experimental
values when the blade first flap frequency was in the region of two-
per-revalution harmonic excitation. Calculated blade bending moment azi-
muthal distributions due to changes in cyclic pitch agreed well with ex-
periment at radial stations near the blade root at values of the ratio of
first flap frequency to rotor rotation rate from 1.5 to 5.0. At stations
near the blade tip good agreement was only obtained at the higher values

of frequency ratin.

A compendium of experimental shaft transmitted force and blade loads

lata for two Adifferent rotor systems is included in vonlume TI.
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INTRODUCTION

Within the spectrum of VTOL aircraft types there is a class that must
have 1 low downwash velocity for efficient hovering and to avoid excessive
disturbance to the surface and persons standing below. It also must possess
high speed, long range, and flight characteristics that are not fatiguing
to the pilot or passengers even in gusty conditions. It must also possess
a low initial cost and inexpensive maintenance to be commercially or mili-

tarily viable.

The low downwash velocity in hovering flight demands a low disk loading
or large disk area per unit weight. At present this requirement can be met
only by large diameter rotors. The need for rotors designed for high for-
ward speed, low drag, rapid h&ghly damped response to control motions, mild
response to gusts, and low vibration level has stimulated a search for a
simpler, more inherently stable rotor system than found on most helicopters

in operation today.

One approach to meeting these requirements has been the development of
the "hingeless"” rotor. The hingeless rotor differs from those found in most
currently T'lying helicopters in that its blades possess only bearings for
feathering motion, which is controlled rather than free, énd no flapping or
lead-lag hinges. The blades of most conventional helicopters are essentially
gimballed near the mast or they may be joined rigidly together and the whole
rotor gimballed to the top of the mast (teetering rotors).

Twe main advantages of the hingeless or cantilever-bladed rotor are its
ability tc apply hub moments through the shaft to the body rapidly and of
generally greater magnitude than available from articulated rotors, and its
making available larger and more appropriately aligned damping forces due to
body pitch and roll rotation rates. These potential advantages, of course,
have long been appreciated in the helicopter world for the cantilever-bladed
rotor. They could not be taken advantage of in the past, however, due to
the extreme gust sensitivity of such a system and the extreme and variable

cross-coupling of the cyclic and 1lift producing controls.



With the development, over the past fifteen years, of the directly
geared gyroscope-stabilized feathering system, gust sensitivity and controls
cross-coupling have been greatly reduced and rapidly responding hirgeless
rotor helicopters with highly stable body modes have been developed and demon-

“trated.

The development of the hingeless rotor gyroscope-stabilized system, how-
ever, has not been without its problems, most of which stemmed from the lack of
significant damping in the blade in-plane modes. As opposed to the flapping
modes which are highly damped by aerodynamic forces, the in-plane aerodynamic
damping is small., Under near 2P resonant conditions, the in-plane forces and
motions can combine with the flapping deflections and forces to nullify the
hub moment feedback path to the gyroscope and produce instability. This
particular problem has been solved in two ways. First, the in-plane reson-
ance has been kept to a low rotor rpm and tight control has been maintained
on the rpm to avoid the dangerous region. The second solution has been to
substitute direct hub moment feedback for the hub moment feedback via feath-
ering moments, thus eliminating the in-plane motion sensitive part of the

feedback path.

Another in-plane resonance proﬁlém occurs in rotors with more than three
blades. Pilot-induced oscillations can lead to high stresses in the reaction-
less modes. These modes are particularly lightly damped since there is no
shaft motion present in the mode and therefore no damping from the body.

Again, strictly keeping away from the resonance has been the solution.

One more possible consequence of light in-plane damping, which can be
avoided by careful distribution of mass and stiffness on either side of the
feathering hinge, is flap-lag instability. This is causeéd by coupling of
the in-plane and flap blade modes at high collective pitch and is discussed

in detail in Reference 1.

In recognition of the importance of in-plane motion to the development
of satisfactory hingeless rotors, the present study has investigated the

in-plane behavior of multibladed rotors.



Along with the large mean hub moment capability of the hingeless rotor
comes inevitably the capacity to produce large oscillatory hub moments. As
long as the advance ratio stays well below K= 1.0, however, they are nor-
mally not significant, except in certain transition flight conditions. But
at advance ratio greater than p= 1.0, the shaft vibration force levels
become very important. And since it appears that the next major developments
in hingeless rotor vehicles involve flying at advance ratios greater than
B = 1.0, the present study investigated shaft-transmitted vibratory forces

due to high advance ratio.

A basic problem in hingeless rotor design is the creation of section
structural properties that do not pick up excessive stresses under any
operating or transient condition and that at the same time maintain radial
mass and stiffness distributions which keep the desired characteristics and
avoid instability. In the next generation of hingeless rotor aircraft,
expected to operate at reduced rotor rpm and K> 1.0, this problem is
especially acute. Endurance limit stresses must not be exceeded if blades

of sufficient life expectancy are to be produced.

Because of the fundamental nature of blade stress determination to ad-
vanced rotor design, the azimuthal distribution of blade section flap bend-

ing moment were investiguted in this study.

The results of these studies are expected to provide a basis for the
systematic optimization of the design of the next generation of high speed
compound helicopters. This includes the slowed hingeless rotor compound
helicopter that cruises at a speed of 300 to 350 knots with the rotor
slowed to as little as half the hovering rpm, and is charncterized
by low rotor 1ift and advance ratio to = 1.5. It also includes, at some
future date, the stowable rotor aircraft with the speed of fixed wing air-
craft, low rotor 1lift during conversion, rotor slowed to zero rpm and then

stowed witain the fuselage.
The specific purposes of this study were as follows:

1. Derive the equations of vertical and in-plane mass element motion
for three-and four-blade rotor-body free-flight configurations with

gyroscope-stabilized swashplates.



2. Analyze the equations for their steady harmonically forced
vibratory response in the form of mean and harmonic aeroelastic

shaft-transmitted forces.

3. Analyze the equations for blade section 1lift and flap bending

moment variation with azimuth.

4. Analyze experimental shaft vibratory, and blade load data for three

rotors:

a. A 33-foot 3-blade rotor with a high constant speed gyroscope-
stabilized swashplate and fixed shaft.

b. A T7.5-foot L-blade rotor with fixed shaft and swashplate,

c. The 35-foot L-blade rotor of the XH-51A compound helicopter in
free flight with a rotor speed gyro-stabilized swashplate and
the shaft restrained by the free body. '

5. Compare theory and experiment.

6. Parameter range for which the study is valid is as follows:

a. Stiff bladed rotors P> 1.3.
b. High advance ratioc u> .3.
c. Subcritical advancing tip Ml9o<( .85.

Phase I of this study (References 2, 3, and 4) investigated the vertical
motions equations of the 33-foot 3-blade rotor. The mean hub and swashplate
moment. and thrust mean aeroelastic derivatives were calculated, neglecting
the effects of the harmonic differential equation coefficients as is the
practice with conventional articulated rotors at low advance ratio. Good
agreement was obtained with experiment at low values of advance ratio.

Cyclic pitch to trim hub and swashplate moments to zerc, control effectiveness,
and stability of the gyro-stabilized system were also investigated and

reasonable agreement found with experiment.

Equations of flapping motion, including aerodynamics, were found for
the 7.5-foot rotor by Sissingh and Kuczynski in References 5 and 6. The

mean aeroelastic derivatives of hub moment with respect to cyclic and
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collective pitch and angle-of-attack were calculated, including effects of
blade mean, first and second harmonic response. Good agreement was obtained

with experiment.

Effects of induced inflow and first and second blade flapping modes were
investigated by Ormiston and Peters in Reference 7. This study showed the
necessity of including more than one flap mode if the ratio of flap frequency
to rotor rotational frequency was less than 1.3. It also showed the large
influence of induced inflow at advance ratio M< .3 and also that significant

effects of induced flow existed at all advance ratio.

The necessity of including the rotor and gyroscope degrees of freedom
in the equations of motion of the total airframe is shown by Heimbold and

Griffith in Reference 8.

Blade section aerodynamic 1lift and flap and in-plane bending moments
presented by Bartsch in Reference 9, Volumes I and II, and comparison with
comprehensive method results by Sweers, in Volume III, for flight tests of~
the XH-51A compound helicopter, form a data base for assessing the validity

of the current formulation in the modest n, low flap freguency range.

Deckert and Mc Cloud analyzed 33-foot rotor data in Reference 10 and
discovered that hub moments produced by cyclic pitch approach zero as rotor
rpm and advance ratio approach zero and infinity respectively, thereby
precluding their use in trimming mean hub moments. They also showed that
small values of cyclic pitch were useful, at high advance ratio, in reducing

shaft vibration.

The experimental testing of the 33-foot 3-blade rotor analyzed under
this contract took place in the NASA-Ames Research Center 40 by 80 foot wind
tunnel. The maximum wind speed attained was 120 knots and advance ratios

of w= .4, .5, .8, 1.1, and 2.0 were tested over ranges of rotor rpm.

Four mass 2nd stiffness configurations of the 7.5-foot 4-blade rotor
wvere tested in the U. 5. Army Air Mobility R and D Laboratory, Ames Direct-
orate 7 by 10 foot wind tunnel. The advance ratio range extended from .29

to 1.75 and flap frequency ratio extended from P = 1.22 to 2.32.



Flight testing of the XH-51A compound helicopter was performed by the
Lockheed-California Comparny, Rotary Wing Division.

The equations of motion derived in this study were programmed on the
IBM 360 digital computer, and the CPS (Conversational Programming System)

terminal was employed in the analysis of the experimental data.

In the design of compound helicopters for flight to advance ratios
greater than unity (p> 1.0) elimination of shaft-transmitted vibratory
forces and the control of blade stress excursions are expected to be the main
tasks. This study has indicated the nature and causes of these two phenomena
and provided a straightforward analytic tool for their prediction. The
groundwork has therefore been laid for the invention of devices, such as
harmonic swashplate control, and optimization of design for the minimization

of flight loads and vibrations in advanced hingeless rotor helicopters.

It is also possible, with vibration and loads calculable at extreme
values of design and flight operation parameters, that refinements in the
methods may be made which will allow calculations in the realm of the con-

ventional helicopter.



SYMBOLS

Symbols and matrices employed in the vertical motions equations are

shown first. Those required for the in-plane equations follow, and sub-

scripts common to both systems complete the section.

b number of blades
b.m. blade flap bending moment ft-1b
B tip loss factor
c blade chord ft
Cl blade root cutout fraction
Crn hub pitch moment coefficient M
p(uR)gnRB
- L
C hub roll moment coefficient
¢ 23
p(HR) mR
M
Cm swashplate pitch moment coefficient 6
© o (uR) TR
M
CQ swashplate roll moment coefficient ¢
¢ p(QR)PnR3
thrust ici L
Co rust coefficient 5 5
p(QR)“nR
<y blade section 1ift curve slope
o
o feathering friction ft-1b/rad/sec
Cq swashplate damping ft-1b/rad/sec
D drag 1b
¥ Jet engine thrust 1b



blade flap generalized force

rotor flap generalized force

blade flap moment of inertis

blade moment of inertia about
the quarter chord

gyroscope diametral moment of
inertia

airframe pitch and roll moments

of inertia

mechanical advantage blades to

swashplate

swashplate spring

1lift

hub rolling moment

hub pitch moment

blade mass distribution

rotor flap generalized mass

swashplate pitch moment

swashplate roll moment

nth flapping mode

pth blade

ratio of blade first flap frequency

to rotor rotation rate

blade pitch moment about the quarter

chord

slugs ft

slugs ft2
slugs ft

slugs ft

ft-1b/rad

1b
ft-1b
ft-1b

slugs/ft

ft-1b

ft-1b

ft-1b



@]

dynamic pressure

radial distance from shaft centerline

rotor redius

time

thrust

forward speed

blade root shear

airframe gross weight

rotor rotating axes

stationary axes
angle-of-attack

blade linear flap angle

rotor precone

fraction of critical damping
blade Lock number

blade parabolic mode tip deflection
rotor flapping mode deflection
swashplate tilt

collective pitch

collective pitch at three quarter
radius

blade twist rate

blade pitch about the quarter chord

blade feathering pitch

1b/ft2
ft

£t
seconds
1b
ft/sec
1b

1b

deg or rad
deg or rad

deg or rad

L
cQ cR
P
Ty

't
ft
rad
deg or rad

deg or rad
rad/ft

rad

rad



lC) ls

“
¥

£l

(2]
(*z)
[a7]
(2]
[3z]
cF]

10

cyclic piteh

rotor-airframe pitch angle
blade forward sweep
advance ratio

air density

solidity

swashplate roll tilt
rotor-airframe roll angle
azimuth position of rotor

position of pth blade relative to
blade 1

cant angle

blade first flap frequency

rotor rotation rate

gyroscope rotation rate

Matrices

aerodynamic stiffness, rotating axes

deg or rad

rad

deg ¢~ rad

slugs/ft3

rad
rad
deg cor rad

rad
deg or rad
rad/sec

rad/sec

rad/sec

aerodynamic

aerodynamic
aerodynamic
aerodynamic

centrifugal

damping, rotating axes

forcing, rotating axes
stiffness, stationary axes
damping, stationary axes

and structural



Additional symbols employed in the in-plane motions equations:

transformation, rotor to blade freedoms
damping
centrifugal and structural, stationary axes

forcing matrix, stationary axes

rate of change of blade force with blade
deflcetion

inertisa
airframe inertia

airframe aerodynamic stiffness

airframe aerodynamic damping

airframe acceleration serodynamics

centrifugal and structural, stationary axes

transformation from stationary to rotating
axes

forcing angles
rotor degrees of freedom

blade degrees of freedom

blade axial force 1b

minimum drag coefficient

pivot radial position 't

11



12

blade in-plane force

rotor in-plane mode generalized force

1b

2
blade moment of inertia about the shaft slugs ft

blade moment of inertia about the pivot

hub moment of inertia

blade inertia parameters

body lateral spring to ground
body longitudinal spring to ground

1lift on pth blade

blade mass
hub mass

blade normal force
rotor yawing moment
blade pivot torsion

blade center of gravity radial
distance

blade shaft torsion

blade normal displacement
blade axial displacement
longitudinal displacement

longitudinal force

slugs ft

slugs ft

"1b/ft

1b/ft

1b

slugs
slugs

1b
ft-1b
ft-1b

ft

ft-1b

ft

o

1b

2

2



[cor]

0, lc, 1s, 2c, 25 .

c/h

lateral displacement
lateral force
blade rotation about its pivot

rotor mode deflection

ratio of inclination of blade
in-plane principle axis to
feathering pitch

blade rotation about the shaft

blade non-rotating undamped natural
frequency

Coriolis force matrix
Subscripts

+ + harmonic component

about the quarter-chord
Aifferential collective mode
feathering

gust

1lift

normal to blade leading edge
nth mode or harmonic

ot plade

blade numbering sequence
rotating axis system

blade three-quarter radius

't
1b
rad

rad

rad

rad/sec

13



XY

[

14

in-plane
rotating

in-plane

vertical
rotating

vertical

equations o: in-plane
axes

stationary axis system

equations or vertical system
axes

system, stationary axes

Less frequently used symbols are defined in the text.



HINGELESS ROTOR TYPES STUDIED

In this report a set of stiff-bladed hingeless rotors operating at high
advance ratio is considered. Its selection was based on the desire to study
rotors that could be employed in future vehicle concepts. Therefore, those
aspects of the advanced helicopter design that cross into the well-understood
areas of conventional helicopters, such as hover and low advance ratio flight,

are not studied.

This philosophy crystallized into the consideration of rotors which could

be applied to the two following types of vehicle:
1. Slowed hingeless rotor winged compound helicopter
2. Stowable rotor aircraft

These considerations resulted in the decision to study only the high advance
ratio flight range .3<u<*; and rotor blades with flapping stiffness in the
range 1.3<Pg», It further resulted in limiting the flight regions to low

1ift values and subcritical advancing blade tip Mach numbers.

The blades, experimentally investigated, had inoptimum structure and there-
fore low Lock numbers, but this is not considered to restrict the applicability

of the theory correlation.

Because the rotors were of the hingeless type, the minimum number of
blades considered was three. Four-blade rotors were also extensively studied.

The theoretical derivations were extended to any number of blades.

Since such rotors can be employed with gyroscope-stabilized feathering
systems, blades swept forward of the feathering hinge and corresponding feath-

ering moments and degrees of freedom were considered throughout the analyses.

Geometry Variations

The variations in blade geometry considered in this study are as follows:

Radius R 't
Chord c ft
Sweep angle A radians

15



Cutout fraction C

1
Precone Bo radians
Twist rate 8, radians/ft

These are illustrated in Figure 1. It should be noted that both the
locus of quarter chord points (along the r-axis) and the feathering axis
pass through the center of the shaft or center of rotation (the z-axis).

In blade configurations in which the quarter chord or hinge lines do not pass
exactly through the center of rotation, fictitious hinge lines and quarter

chords may be assigned with little loss of precision.

The analyses presented in this report are valid for precone and twist
values that do not seriously violate small perturbation values (say up to 10°)
and for any value of blade radius. Chord lengths, on the other hand, should
not exceed a chord-to-radius ratio of about 1/10 or blade section aerodynamic
pitch damping, neglected in the theory, may become significant. Blade tor-
sional deformation, neglected in these analyses, can also result in significant
changes in blade airloads should the ratio of aerodynamic moment to torsional

rigidity become large enough.

Sweep angle and rcot cutout values may be of any magnitude.

8 R
t
CENTER OF f;)'('\EJSGE LEADING 1/4 CHORD LOCUS 7,
i ROTATION /EDGE
—=— —— —— - ---L—___.__.— A-c—/{_
v o
SR 1 374 crorp Locus A'SWEEP ANGLE |
e R - '
4
DISK PLANE;
—+ {Bo

Figure 1. Blade Geometry
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The particular equations derived to completion in this report are for
three- and four-blade rotors but indications are given at every step as to
the procedure to follow to extend the derivation to rotors with 5, 6yunnn

n blades.

In considering the complete rotor, an axis system rotating with the
blades is required to act as a reference for the location of each of the
blades. It is denoted by lower case letters. The axis system is selected
so that the positive z-axis runs along the shaft upward, in its nominal uﬁ-
tilted position. The axes rotate with the rotor but are not attached to it,
for the rotor can pitch, roll, plunge, surge, sideslip, and yaw relative to
the rotating axis system. The x-axis runs along the nominal pbsition of the
number one blade quarter-chord locus, if precone is zero (atherwise normal to
the z-axis). The y-axis extends normal to the x, z plane, positive to the

right, to form a right-handed axis system.

The blades are numbered in ascending order moving around the rotor in a
clockwise direction so that, to an observer on the ground watching the blades
go by, the blades would appear in the order 1, 2, 3,..., n, 1, 2, 3,..,

The arrangement of blades and rotating (lowercase) axes is shown in Figure 2.

z
HIGH SPEED GYRO \
—l

@

RODS TO SWASHPLATE

Figure 2. Rotating Axis System and Blade Numbering
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The figure also shows schematically the attachment of the blade feathering
horns to the swashplate via the stabilization gyroscope,in the general case of
this report. Tilting the swashplate, and the parallel gyroscope, causes the
blades to feather cyclically. The relationship between swashplate tilt and

blade feathering is shown in Figure 3.

Swashplate tilt relative to rotating axes is denoted by er, ¢r pitch
and roll about the y and x axes respectively. Because of the blade feath-
ering arm and linkage geometry, pitch and roll do not separately produce purz
"eoyclic pitch" of the blades as is usually the case with articulated rotors.
("cyclic pitch” here is relative to rotating axes.) This slewing around of
the gyroscope (and swashplate) relative to the blades is denoted by wo’ the
cant angle, and is shown in Figure 3. By this definition, most articulated

rotors would possess a cant angle of ninety degrees (WO = 90°).

—
<]

)

CANT ANGLE 46

b~

HORN ARM
GYRO ARM

e

L A
[
5 i

X

Figure 3. Cant Angle and Mechanical Advantage
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Cant angles different from 90° are employed in gyroscope-stabilized
hingeless rotors for purposes of free-flight stability. If the shaft is
prevented from pitching and rolling, as is the case during wind tunnel
testing, the rotor-gyroscope stability is not affected by cant angle. It
should be noted that the cant angle is relative to the blade feathering axis.
The blade gquarter chord leads the feathering axis by the sweep angle.

In order to allow the use of a smaller gyroscope the gyro arm is made
shorter than the blade feathering horn arm so that the gyro tilt angle is
somewhat greater than the maximum feathering displacement. This is called

mechanical advantage.

H e
k = Zorh arm Mechanical Advantage
Gyro arm

Mechanical advantage is such that values greater than about 1.5 are

difficult to achieve mechanically.

Degrees of Freedom

The geometric form of the rotor systems studied in this report has been
discussed in the previous section. It was necessary to establish a reference
axis system rotating with the rotor in order to describe the blades, linkages.
gyroscope, and rotating part of the swashplate. Similarly, in order to dis-
cuss the rigid body to which the rotor is attached and the stationary part of
the swashplate, it is necessary to establish a second reference axis system
that is stationary. Denoted by capital letters, this system employs the same
vertical or Z axis as the rotating system. Its X and Y axes, however,
do not rotate but remain fixed relative to the earth. (In actual fact they
translate with the mean forward speed of the vehicle.) The X or longitudinal
axis is positive in the nominal aft direction of the body and the Y axis ex-
tends normal to the X, Z plane positive to the right, again forming a right

handed system. Both axis systems are shown in Figure 4,

The rotating axes are related to the stationary axes by the rotation
angle Y, which is a function of time. Since the rotation rate is assumed

to be constant in these analyses, | = (It

19



Figure 4. Stationary and Rotating Axes

where = the rotor rotation rate - radians/sec

t time in seconds.

I

Perturbational motions of the rotor and shaft, described in terms of
degrees of freedom in the rotating axis system, may be transformed to station-
ary axes. In this form the shaft motions are in a convenient form to include

the rigid motions of the vehicle body.

It is clear, therefore, that the degrees of freedom of the system may
be described in rotating or stationary axes. (There are some exceptions which
will be noted later.) Motions of rotating parts are basically described rela-
tive to rotating axes and motilons of stationary parts relative to stationary
axes. The complete set of motions equations could be described in either
coordinate system. In these analyses, however, the rotor alone is described
in rotating axes; its equations of motion are transformed to stationary axes
and these are combined with the body equations of motion and solved in

stationary axes.

20



Whether thought of relative to rotating or si;%ionary coordinates, the
@o two sets for the pur-

rotor-gyroscope-body motions have been separated
pose of this study; those that produce perturbational motﬁaﬁ;of the elements
of mass essentially in the vertical direction, and those that produce mass
element motions essentially in the plane of the rotor disk. The two sets of
degrees of freedom can only be separated in the small perturbation motion

sense since nonlinear coupling between the two sets becomes significant with

increasing blade loads and displacements.

It should be noted that the vertical motions equations are solved com-
pletely independently of the in-plane motions equations. The in-plane motion
equations forcing functions, however, are produced almost entirely as a by-
product of the motions of the vertical equations degrees of freedom and their

aerodynamic forcing functions.

The two sets of degrees of freedom will be described separately in the

following:

Vertical motions of mass elements. - The degrees of freedom employed in

describing those motions of the rotor-gyroscope-body system that are essen-
tially in the vertical direction can be most easily pictured relativg to sta-
tionary axes (with one exception, discussed later). Figure 5 shows the sta-
tionary X, Y, Z axes degrees of freedom of a 5-blade rotor. The set for
3-blade rotors is obtained by deleting the two scalloped disk flapping modes
62c and 62s’ the reactionless flapping cao¥ine and sine degrees of freedom.
For rotors with even numbers of blades L, 6, ..... etc, in addition to the
reactionless modes existing in pairs, there is a single reactionless mode,
sometimes called the differential collective mode (or degree of freedom). It

is characterized by the blades being alternately up and down.

21
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SHAFT PITCH *©

SHAFT ROLL ®

SHAFT PLUNGE =z

X

Figure 5. Vertical Motion Degrees of Freedom in Stationary Axes



SWASHPLATE AND
GYROSCOPE PITCH 8

Note: Blade feathering displacements accompanying gyro tilt angles
show effect of cant angle Yo -

SWASHPLATE AND
GYROSCOPE ROLL ¢

Figure 5. (Continued)
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In this report the degrees of freedom are arranged in vectors in a fixed
order to facilitate matrix algebra. For 3-, M—, and 5-blade rotors the

vectors of degrees of freedom in stationary axes are as follows:

3-blade rotor L4-blade rotor 5-blade rotor
4 @ 3 r (-) p' r @ W
$ ) $
Z Z Z
8 6 8
_ ¢ _ ¢ _ b
By = 8, = 9, =
8 ) 8
) o o
% % %
6d 62c
623

NOTE: 1. Subscript Z denotes stationary axes.
2. Subscript d denotes differential collective mode.
The degrees of freedom have been shown in stationary coordinates for
the sake of clarity but they, in fact, represent the end product; the form

in which they are employed in the equations of motion to be solved.

In order to obtain these degrees of freedom a parallel set in rotating
coordinates must be transformed to stationary axes. The rotating axis de-
grees of freedom employ the same symbols as the stationary axis modes but are
differentiated by subscript "r." They look the same as the stationary modes
but the mode shapes are relative to the rotating x, y, z axis system and
remain undistorted as the rotor rotates or are independent of azimuth (the
number one blade lies along the x-axis at all values of azimuthal orienta-

tion of the rotor).

Thé-transformation from rotating axis degrees of freedom to stationary
axis degrees of freedom must therefore be a function of azimuth or time if

the rotation rate is constant.
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The transformation for the 5-blade rotor is as follows:

Bz - Tz BZ
z - rotating axes
Z - stationary axes
3 h - - r
0, cos ¥ -~ sin )
$ sin ¥ cos ¥ )
r
z. 1 Z
8 cos ¥ - sin { 9
r
¢} sin cos V ¢
5 1 5
1 OI‘ = o
& .
O cos ¥ - sin ¥ b
6¢r sin { cos Y 6¢
- 8i )
62Cr cos2 ¢ -sin2 ¥ 2c
623 sin2 y- cos2y )
L T L | | 25

For the 3-blade rotor the transformation is as above with the last two
rows and columns deleted. For the Lk-blade rotor the last row and column are

deleted and the lower right corner element cos 2 § 1is replaced by 1.

For aircraft body and gyroscope (or swashplate) angular motion and rotor
disk tilt, unit values of displacement in staticnary coordinates are equivalent
to displacements in rotating coordinates which vary sinuscidally once per rev-
olution with azimuth. For example, a unit value of body pitch in stationary
coordinates © = 1.0 radian is equivalent to the following sinusoidal varia-

tions with azimuth in rotating coordinates:

®. = Bcos

r

@r = O@sin ¥

Body plunge, collective flapping and, for the four-blade rotor, the

differential collective mode are the same in both coordinate systems.
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Constant reactionless flapping displacement in stationary coordinates,
however, is equivalent to reactionless flapping in rotating coordinates that
varies with the second harmonic of azimuth. For example, if the disk of a 5-
blade rotor took up a constant cosine scalloped shape in stationary coordinates,

52C,the equivalent motion in rotating coordinates varies with azimuth as follows:

6

2Cr 62c cos 2 |

8

i

25r 620 sin 2 ¥

The relationship between rotating and stationary axes vectors of degrees
of freedom is also expressed in this report for the sake of conciseness, in

vector notation,as follows:

Z

Z

B rotating axes
%2~ [TZI ®2

1l

stationary axes

Although the equations are employed in stationary coordinates, they came
into that form through the application of the -[TZ] transformation to the
more fundamenpal equations of motion derived relative to rotating coordinates.
It is necessary, therefore, to first develop the equations relative to ro-
tating coordinates or the relationship between the motions and the generalized

forces of the rotating degrees of freedom.

The first step in this development is the determination of the kinematic
relationship between the motions of the individual blades in their single-
blade degrees of freedom and the motions of the complete rotor in its rotating
degrees of freedom. The relationship is independent of the azimuthal position

of the rotor. This forms the subject of a later section.

Motions of the rotor in its rotating degrees of freedom may be described

in terms of the single blade degrees of freedom (shown in Figure 6).

The vertical single blade degrees of freedom may be arranged in a vector

to facilitate matrix algebra,
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Figure 6. Single Blade Vertical Degrees of Freedom
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The pitch, roll, and plunge motions of the rotor disk are composed of the
first three blade freedoms: linear flap 8, vertical plunge 2z, and blade
feathering ep. Gyroscope (and swashplate) pitch and roll are composed of
blade feathering and linear flapping (due to the sweep of the feathering hinge).
Rotor disk collective, pitch and roll and reactionless flapping modes are all

defined in terms of the blade parabolic or first flap structural mode.

The vertical motions equations contain only the first blade dynamic

flapping mode.

In-plane motions of mass elements. - The stationary axis degrees of free-

dom employed to describe rotor motions essentially in the plane of the disk
are as shown in Figure 7. The freedoms shown are for a five-blade rotor.

Deletion of the cosine and sine reactionless lead-lag freedoms provides the
set needed for a three-blade rotor. Four-blade rotors require the addition
of one differential collective lead-lag mode to the three-blade set. It is

the same in rotating and stationary axes.

The number of blades shown in Figure 7 is arbitrary; the displacements
merely show the deflected positions the blades would occupy at that azimuth.
It should be noted that positive %ead—lag is lead or counterclockwise structural
deflections. {(This is opposite the convention in Reference 11 but is used
since all counterclockwise displacements are to be positive, as is the normal
mathematical convention.) At this point, the blade in-plane deflection mode

has not been defined.

The in-plane degrees of freedom in stationary axes are arranged in vectors

to facilitate matrix algebra, as were the vertical motions freedoms.
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LONGITUDINAL DISPLACEMENT x

ROTATIONAL DISPLACEMENT v

Figure 7. In-Plane Motions Degrees of Freedom in Stationary Axes
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TORSION LEAD-LAG ¢ .

LATERAL LEAD-LAG ¢ y
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Figure 7. (Continued)
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Figure 7. {(Concluded)
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3-blade rotor 4-blade rotor 5-blade rotor

(v | (v ] ¥
X X X
v v v
By =15 %% 71 % 8y =] S
Sy by ¢y
CX C’x gx
LCdJ C2c
g2s

Compared to the vertical motions degrees of freedom, a motion equivalent
to swashplate tilt is missing. The in-plane motions are therefore described

by two fewer degrees of freedom than the vertical motions.

The next step is to visualize these modes in axes rotating with the
rotor. The lower case x, y label for rotating axes replaces the uppercase
X, Y of the stationary axes system but the modes maintain the same shape.
The major difference now is that the blades maintain fixed azimuth positions
relative to the x, y axes. The X-axis is always directed through the axis
of rotation parallel to the number (1) blade quarter chord line and the blades
are numbered in ascending order as they pass a fixed azimuth position. The
azimuth location of the pth blade relative to number (1) blade is

2n
wp = - (p-1) T

where b is the number of blades.

The rotating axis degrees of freedom employ the same symbols as the sta-

tionary axis freedom but differentiated by subscript "r.”

Vectors describing the in-plane rotor motions in rotating degrees of
freedom may be transformed to stationary axes degrees of freedom by a sine-
cosine transformation very similar to the one employed for the vertical mo-
tions. For five-blade rotors, the transformation of rotating axes freedoms

to stationary axes is as follows:
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{ 3 = - )
Y. cos ¢ - sin ¥ (y
X fln § cos ¥ X
v 1 v

r
gor 1 QO
gyr = cos ¥ - sin ¥ sy (
xr sin § cos {X
€2c cos 2 § - sin 2y QZC
T
Cesr sin2 ¢ cos 2y Q2SJ
\ J =3 J .

For 3-blade rotors, the last two rows and columns are deleted. For
L-blade rotors, 1.0 is added to the lower right corner of the 3-blade mo-

tions expanded by one row and column.
The above relationship is also expressed in matrix form as follows:

_ Vector subscripts
By~ ITxy, Sy
Xy - rotating axes

XY - stationary axes

Before the equations of motion in rotating axes can be developed it is
necessary to determine the kinematic relationship between motioﬁs of indi-
vidual blades in their single-blade degrees of freedom and the motions of the
complete rotor in its degrees of freedom relative to axes rotating with the

rotor. This is the subject of a later section.

Motions of the rotor in its rotating degrees of freedom may be described
in terms of the single blade degrees of freedom shown in Figure 8. The first
flexible mode has been defined to be a straight line lead-lag with an offset
pivot. This mode shape was assumed after an inspection of experimental mode
shapes for the 33-foot rotor. Examining the reasons for its very close ap-
proximation to this shape, it became evident that all hingeless rotors with

relatively flexible root sections in-plane and relatively stiff in-plane blade
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Figure 8. Single Blade In-Plane Degrees of Freedom



stiffness outboard would have shapes of this type. The specific shapes and

frequencies, etc., will be discussed in a later section, as they vary with
rpm.

The single blade degrees of freedom may be arranged into a vector for

matrix operations:

u
p
V?
T] =
Xy
1Y UP
QP

The rotor in-plane degrees of freedom relative to coordinates rotating
with the rotor are composed of the single blade degrees of freedom. The only
structural dynamic mode included is the first in-plane lead-lag mode denocted

€. Higher dynamic modes have not been included in this analysis.

The lateral and longitudinal degrees of freedom Yy and X, in ro-
tating coordinates are composed only of u and v single blade degrees of
freedom. The rotatiocnal mode V. is composed only of the blade rigid body
rotation mode v. All the remaining rotor degrees of freedom, relative to
rotating axes are lead-lag modes and are composed solely of flexible first

lead-lag blade degrees of freedom (.

Kinematic Relationships

In this section the rotor degrees of freedom relative to rotating axes
are defined in terms of single blade degrees of freedom. The kirematic re-
lationships between the two sets of freedoms, for each set of motions, verti-

cal and in-plane, are expressed as transformation matrices

Sets of degrees of freedom for vertical and in-plane motions are treated

separately.

Vertical motions blade-rotor kinematics. - Arranging the single blade

degrees of freedom in a vector facilitates the matrix algebra and allows the

displacements of the pth blade to be represented by a single symbol ﬂz
P
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where 8

P

The blade motions may then be expressed conveniently in terms of rotor

motions in degrees of freedom relative to rotating axes.

T]z - -Dz ] Bz
1Y b

where p indicates the blade number. Rewriting:

z
P :[DZ} »
) P .. for a five-blade rotor
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where [D
A

Z
|=5
wn

dép dp 4gp dgp dgp d8p dBp dfp dBp dgp 7]
d® d dz a8 d¢ dé db ds as dod
r T r r T 0 9. ] 2c 2s
by r r r r
dz dz dzp dz dzp dz dz dz dzp dzp
a® HE dz d de ds as as ds dd
T r r r r o 8 ? 2¢ 2s
r r by r r
dbp dép dop dép d6p dép dgp dép d®p dép
a® ¥~ dz a8 de¢ as d as ds d
T r T o e 9 2c 2s
r by r T r
dép dép dép dép dép ddp ddép ddp dop dép
dC% d@r dz dGr d¢r déo dée d6¢ dch dezs
— r r r r r |

The next task is to define the motions of the individual blades in terms
of those of the rotor, the elements of the matrix. The motions of the blades
are relative to the blade line of aerodynamic centers (or quarter chord)

projected into a plane normal to the undeflected rotor shaft.

Consider a rotor with b number of blades with the number 1 blade located
along the +x axis (the axes rotate with the rotor). The position of the
locus of aerodynamic centers of blade p 1is located at:

2 1
‘l‘p = - (p-1) <

which is an important relationship in determining blade motion relative to

rotor motion.
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Blade motion due to shaft motion - Blade rigid flapping and pitching about
the aerodynamic center are the only blade motions resulting from shaft pitch

and roll displacements.

The rigid flapping »f an arbitrary blade p due to shaft motion is:

8
<

Il

- ®, cos WP + @rsin wp

I}

B

2 m 27
- ) 2T 5 g3 1) =1
o ®, cos (p-1) T , Sin (p-1) o

The pitching of blade p due to shaft motion is:

© =@® sinVy_+ % cos ¥
p r P r P

_ . 2 2 n
ep = - @, sin (p-1) Tt ér cos (p-1) -

Rotor plunge motion produces only blade plunge motion. For a blade p,

the relationship is merely: zp = z.

In matrix notation the blade motion due to shaft motion is:
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r 2 2 -
Bp ] [ cos (p-1) —EE - sin (p-1) _EE 0 ) .
@y
z 0 0 1
p
- 2 n 2 m @r’
Gp - sin (p-l)-j;— cos (p-1) o 0
5 0 0 0 °r
| P L -
where p =1, . . , Db.

Blade motion due to gyro motion: Gyro pitching and rolling motion causes
blade pitching and flapping relative to the blade quarter chord axis. In

order to resolve the gyro motions into blade motions, define the axes xb and

yb:
6p Y
/ea/// b
~
e
P ~
~ - er
X Tl
\
\
FEATHERING \
HINGE NO.
BLADE : \\
G A.\
A oA
! %0
D \
b
x
where:
Gb cos (wo - A) - sin (Wo - A) Gr
¢ sin (wo - A) cos (Wo - A) 9.
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Positive values {or eb and ¢b swashplate deflections produce
positive blade feathering angles at ¢ = 180° and 90° respectively. Note
that the blade feathering axis is located behind the quarter chord axis by
the angle A. However, the azimuth position is measured relative to the

quarter chord axis.

With the above in mind, the feathering angle of a blade located at wp

is:
8, = Ll Bb cos ¢y + @ sin ¥
f k P b o]
P
_ 1 2 T 1 . 2 m
Gfp = -3 8, cos (p-1) T T X ¢b sin (p-1) =
or in matrix notation:
1 2 m , 2.n] 8
Bf = - [éos (p-1) - sin (p-1) 5 b
P 0

b
where k 1is the gyro to blades mechanical advantage.

The relationship between blade feathering about the feathering axis to
pitching and flapping relative to the quarter chord axis is:

Bp sin A

) cos A P
P

Now the motions about the quarter chord can be expressed in terms of the

swashplate angles Br and ¢r:

cos (p-1) égz sin (p-1) = r

8 cos A sin (wo )

i
t
El L

B sin A)r N %] cos (wo-A)-sin (Wo- A)| |8

A) cos (¢o- A) ¢r
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therefore:

"a8p dB8p | sin A cos (y_-A)-sin(y_ -7)
EE 7 o o
r r 1 2 1 . 2
= -3 cos (p-1) —— sin (p-1) .
d%p d cos A sin (y_~-A) cos(¥_-A)
a8 @?‘E ° °
| r rJ
and: - -
8 \ dgp dBp
P ae_ ~ df,
zZ 0 0 )

o]
QLg;
[¢n]

a1
e
]
&
la}

o
@)
(@)

?
L L
Blade motion due to rotor flexible flapping motion: Blade flapping

displacements are limited to the first flap mode, various combinations of
which make up the rotor flapping modes. In rotating coordinates, the number
of rotor modes will then equal the number of blades. A Z2-blade rotor would
have a collective and a pitch (or roll) flapping mode; whereas a 3-blade
rotor would have both pitch and roll flapping modes, plus the collective
mode. A L-blade rotor would additionally have a self-balancing rotor mode,
which would produce no inertial forces in the earth-fixed axes system. A

5-blade rotor would have two self-balancing modes.

For example, the modes of a lL-blade rotor would be as follows:
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AIRFLOW

COLLECTIVE

PITCH

ROLL

SELF BALANCING

The relationship between the rotor flapping modes and the flapping co. a

blade at §_is:
P
6p = - 5ner cos n wp + 6n¢r sin n wp
cos n (p-1) 2T _ g sin n (p-1) 2
b ng b
r r

5, = - b

For rotors with an even number of blades:
n=1,...., 0.5b
For rotors with an odd number of blades:

n=>1,...., 0.5 (b=1).
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where n 1s a number representing the harmonic shape of the mode relative
to the axes rotating with the rotor. For example, n =1 represents rotor
disk tilting relative to the shaft; n = 2 represents a scalloped shape for
the rotor tips with two lobes up and two down regardless of the number of

blades.

Substituting the required values of n yields the modes. Thus:

2 T . 2 m _
6p = - 6y cos (p-1) - - 6¢ sin (p-1) 5 n=1
r r
2m . 2m B
6p = - 620 cos 2 (p-1) - - 525 sin 2 (p-1) - 0= 2
r r
2m . 2T
6p = - éncr cos n (p-1) - - 6nsr sin n (p-1) =

In addition, the collective mode will be:

5 | 0 0 0 0 116, ]
P r
%y
zp 0 0 0 . 0 5 r
9
0 0 0 0 . 0 .
P
2 m 2 m . 2 m |6
- 1) = L s 1) &2 - -1) & |I"nc
ép 1 cos (p-1) 5 sin (p-1) T e sin n (p-1) = -
\ J _ - nsr

In summary, the transformation matrix relating blade motions of the
degrees of freedom in rotating axes are as shown on the following page for the

five-blade rotor:

In-plane motions blade-rotor kinematics - With the in-plane displace-

ments of the pth blade represented by the vector:
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the relationship between the dispacements of degrees of freedom of the rotor
relative to rotating axes and the displacements of the pth blade may be ex-

pressed as follows:

1 =
X
yP

D, ] By
P

where Bxy is the vector of displacements of the rotor degrees of freedom
relative to rotating axes.

Determination of the elements of the IDXy

P
tions that occur due to the motions of each of the rotor degrees of freedom

] matrix,or the pth blade mo-

follows.

DUE TO UNIT y DISPLACEMENT:
y = 1.0 FOR THE P TH BLADE

u =COS ¢
p

v = SIN ¢
p

—

WHERE ¥ = - (p-1) 2 7
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DUE TO UNIT x DISPLACEMENT:

DUE TO UNIT vDISPLACEMENT:

L8

FOR THE PTH BLADE OF A
“p BLADED ROTOR

U = - J
p SIN v
v = COS
P p
UP = 1.0



DUE TO UNIT S’o DISPLACEMENT:

— —

;7 N
y \
) \
i . \
\ —- - -} y §P=l.0
\ . \\ /
\
Y%
\\ X 7 S—P
~ -
X

Due to unit Qy displacement:

Qp = - cos Wp

Due to unit QX displacement:

= sin ¥
gP
Due to unit §2C displacement:
= - cos 2
Qp V5
Due to unit g2s displacement:
= + sin 2
gP wP

If more than five blades are employed in the rotor design, then a gen-

eral expression for blade displacement due to unit reactionless mode displace-
ments can be used.

For unit reactionless mode dispacements gmc and gms’ where m = 1,

n == for even numbers of blades u
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and n = E-Ez—l--for odd numbers of blades

b

It

number of blades

the displacements of the pth blade become

gP

¢

- Ccos my
wP

sinm
qJP

Theoretical Considerations

Scme of the physical elements of the rotor-gyroscope-body system or the
forces on, or motions of them, were simplified for the sake of clarifying the
behavior of the complete system. The chosen simplifications did not greatly
distort the completed result and the reasons for this are discussed in this

section.

Those aspects of the system elements simplified included: rotor aero-
dynamics, blade section aerodynamics, radial flow effects at blade tips, in-
plane components of aerodynamic 1lift forces, in-plane motion of a single blade,
blade flap to in-plane inertia coupling,and the high-speed gyroscope physical
representation. The ranges of system parameters over which the simplifications

are expected to be valid are indicated.

Some concepts useful in understanding the behavior or hingeless rotors
are also discussed. These include mean rotor aercelastic derivatives, the
composition of the hub force two-component vibration derivatives, residual

forces and how these may be trimmed by the application of cyclic pitch.

Aerodynamic Simplifications. - Flight at advance ratio greater than

B = 0.7 has not been studied very extensively, up to this time. Therefore,
the present study should be considered exploratory in nature. The simplest

concepts which yield approximately correct answers have been used.

In this study of the basic behavior of hingeless rotor systems, the math-
ematical models representing them have been shorn of all but the most essential
considerations. Some of the effects eliminated would have contributed signifi-

cantly to the magnitudes of the final answers at certain critical conditions,

51



but including them would have obscured the fundamental behavior of the system
(and more comprehensive methods are available for the purpose of producing

accurate quantitative results).
Some of the simplifications are as follows:

linear aerodynamics: The present tests have veen limited to conditions
which do not seriously violate aerodynamic linearily. Allowing the use of
linear aerodynamic theory opens the door to straightforward techniques for
estimating such things as radial 1ift induction effects, effects of downwash
from previous blade passages and unsteady aerodynamics. Only one of these
effects has been investigated in this study. The main consequence, however,
of aerocdynamic linearity is that superposition of the effects of angle changes,
for example: control angle, angle of attack,and precone may be calculated

. independently of each other and summed up to yield the correct answer.

Aerodynamics is expectied to be linear as lor. as tne combined seciicn
angle-of-attack remains lecs than, say, 10 degrees. juring the conversion
phase of flight of a stowable rotor aircraft and high-speed flight of slowed
rotor compound heligopters, the nominal rotor 1ift is small so that blade
angles-of-attack are well below stall limits in areas of significant dynamic
pressure. In addition, over most of the converslon, tip speeds are well below

the speed of sound.

In the formulation of the equations of motion the inertia and structural
forces are also kept within the linear range,- exceplt for in-plane forcing
functions, so that the theory of systems of linear ordinary differential

equations, with harmonic coefficients, can be emplcyed.

Rotor-induced infiow: At high advance ratio, if induced inflow is
assumed uniform over the digk, its value 1s very small. Even though uniform
inflow is generally considered a poor approximation, it is expected that at
very high advance ratio even the nonuniform induced inflow effects are neg-

ligible; therefore, it has been completely ignored in this report.

Advance ratio effects: With any forward speed at all there is a region
just to the left of the rotor mast where the net flow proceeds past the air-

foil sections from the trailing edge to the leading edge. It is small at
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low advance ratio and approaches 50% of the disk as the advance ratio
approaches infinity. ZEffects of reverse velocity have been explicitly ac-
counted for. The blade trailing edge has become the new "leading edge" and
section aerodynamic centers have been assumed shifted to the three quarter

chord locus and local 1ift curve slope has been reduced.

Another ramification of advance ratio is that it controls the geometry
of the vortex patterns shed by the individual blades. At low advance ratio
the vortex structure and attendant downwash from many blade passages accumu-
lates over the rotor disk and drifts slowly downstream causing large in-
duced downwash over the disk concentrating toward its aft edge. However, at
high advance ratio, the tip vortices stream almost straight downstream from
the blade tips so that downwash cannot accumulate. This is why induced down-

wash at high advance ratio has been assumed to be negligible.

At azimuths remote from 90 and 270 degrees at high advance ratio, the
flow approaches the blade obliquely. 1In the disk aft semicircle the flow
meets the blade flowing obliquely outboard. In the disk forward semicircle,
it meets the blade flowing obliquely inbocard. Wind tunnel tests have shown
that resolving the flow intc components parallel to the blade and normal to
it, ignoring the radial component, and treating the blade section immersed in
the normal component as two-dimensional flow,yilelds a close approximation to
the measured pressure distribution and 1ift at the section (Reference 12).
This principle has been used extensively for reducing the drag of wings of
airplanes flying at transonic Mach numbers. In addition, recent tests have
shown that the primary effect of spanwise flow is to increase the maximum
1ift before stall on the section and not to change the 1lift curve slope or

linearity (Reference 13).

At high advance ratio, radial flow acting on the tips of slender blades
at a local angle-of-attack, creates some 1lift. If the rotor angle-of-attack
were zero,the blades in the forward semi-disk would still present a local
angle—of-attack due to precone. A simplified analysis showed that even at an
advance ratio as high as W = 2.0 the effects on aercelastic derivatives of
blade tip 1lift were dwarfed by blade loads induced by flow normal to the
leading edge. Blade tip slender-body 1lift due to radial flow was therefore

not included in these analyses.
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Unsteady aerodynamics: The primary effect of unsteady aerodynamics can
be seen by examining the growth of 1lift on a blade section after a sudden
change in angle-of-attack. Lift growth is given by Wagner in terms of numbers
of chords travelled {Reference 1L). Lift starts at 50% of maximum and grows to
90% within 6 chords travelled. 1In a rotor with blades of small chord the 1ift
becomes 90% of steady state in a small fraction of the rotor tip perimeter re-
sulting in effectively steady-state conditions being reached within less than
10% of total azimuthal travel if the forward speed were zero. At high advance
ratio the tip velocity at ¢ = 90® is greater than R so the 1lift would grow
to steady state in somewhat smaller a;imuthal displacement. In the reverse
flow region, the opposite would be true and a much longer azimuthal travel
would be required to attain a near steady-state condition. Unsteady effects
would cause some deviation from the results expected with steady aerodynamics,
especially in the reverse flow region but there the low dynamic pressure makes
the 1ift sensitivity small so the effect would be lost in the total aerodynamic
derivative. The net effect of unsteady aerodynamics is not expected to reduce
the effective blade section lift-curve slope by more than a few percent. For
this reason unsteady aerodynacics is not expected to change the basic charac-

teristics of solutions found without it and was not included in these analyses.

Blade 1ift radial induction effects: - The most significant effect of
radial induction is loss of 1ift near the blade tip. This effect depends on
the aspect ratio of the lifting surface. The blades of typical rotors have
aspect ratios greater than ten. For such high aspect ratios the tip effect is
hardly noticeable inboard of about 80% of the radius, and can be approximately
accounted for by assuming the blade to be smaller in radius by a factor B

(B~ 0.97 in these analyses) than it is.

A second effect is a small reduction in 1ift over the whole blade. This
may be accounted for by reducing the local 1ift curve slope slightly. A re-
duction factor of .95 was found to be appropriate for the 33-ft rotor. The
1ift at a section with the above corrections depends only on the local dynamic
pressure‘normal to the leading edge and the normal angle-of-attack at the sec-

tion. This is also known as strip theory.
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In-plane component of blade 1ift: In the formulation of the in-plane
equations of motion of the blades-hub mass system, it is assumed that all mass
motions are in the plane of the disk. In actual fact the principal axis of
the blade in-plane motions of the three-quarter radius section, for ex-
ample, are not normal to and parallel to the disk plane but are at a small

angle to the reference plane.

It is, therefore, important to calculate the component of section aero-
dynamic 1ift in the direction of the in-plane principal axis even though it
continuously changes direction with azimuth. So long as these in-plane equa-
tion external forces are calculated in the actual direction of the in-plane
modes they may be applied to the planar equations without introducing

significant error.

The blade section 1lift force is predominantly in the vertical direction
so that the in-plane component magnitude is controlled by the sine of the
small angle between the in-plane principal axis and the relative wind vecotr
component normal to the blade leading edge. This assumes that the blade sec-
tion resultant force is perpendicular to the wind velocity vecotr and may be
justified by examining a section of a blade with local angle of attack applied
to it. The 1ift and drag are available from section theory and experiment

(Reference 12).

.02}
o
d ——

WIND
- VELOCITY

€1

The drag is very small and parallel to the wind vector, it is at ¢, = 1.0,

for example, 2% of the 1lift or cy = .02. This causes about a 1.0° change in

the resultant vector from the position of the 1ift vector alone. 1f the 4
o]
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or drag at zero lift is considered separately, then the resultant is less
than 1/2 degree from the section 1ift vector,which is uniquely defined to be
perpendicular to the wind vector. 1In forcing the blades in the in-plane
principal axis direction the effective plane of the in-plane motion may vary
by angles of the order of 10° or more from the wind direction. The error
caused by eliminating the section drag due to 1ift, therefore, will be vir-

tually negligible in determining the in-plane aercdynamic external forces.

In-plane motion of & single blade. - In an actual cantilever blade with

no root motion, the flap and in-plane motions are coupled. The blade still
possesses modes that are primarily flap motion or in-plane motion but each has

some component of the other.

At some feathering pitch, near zero, the two first cantilever modes,
characterized by motions at the three-quarter radius, for example, will be
uncoupled: pure flap and pure in-plane. The inclination of the principal

axis will be zero.

At zero rpm, if the hub inboard of the feathering hinge is very stiff
so that most of the blade flexibility is outboard, then the structural prin-
cipal axis and the flap-in-plane mode vibration principal axes follow the
feathering pitch rotation. This is the case for ithe 33-ft rotor. If the hub
inboard of the feathering hinge is flexible and the blade outboard very stiff
then the principal axis does not rotate as the bl=de feathers. Most rotors

in service approach this conlition.

At high rpm centrifugnl forces come into play. 7They produce a large
effective stiffness resisting displacements normal +to the disk plane and a
small effective stiffness resisting displacementz in the plane of the disk,
the latter proportional to effective in-plane pivot offcet. The principal
axis of the centrifug:! stiffnesses are not affected by blade feathering
pitch. For example, the flap in-plane principal axes for an articulated
rotor are always parallel and perpendicular to the :isk plane and independent

of blade'feathering pitch.

Centrifugal stiffening -icting in conjunction with flap and in-plane
structural stiffnesses generites a new principal axis which rotates in pro-
portion to feathering pitch with a factor of proportion:lly either greater or

less than unity. In these annlyses the factor is dencted by the symbol «.
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Flap-in-plane inertia coupling. - The in-plane blade-hub mass equations

of motion were written as though all mass motions took place in the disk plane
normal to the shaft. The vertical motions equation were written as though all
masses moved only in the vertical direction. Under these conditions no cou-

pling between vertical motions and in-plane motions would exist.

If a rotor possessed no precone or twist and its collective pitch and
anrle-of-attack were zero it would satisfy these conditions for small cyclic

pitch applications.

The 7.5-foot rotor, studied experimentally, essentially met these require-
ments even though it was operated at significant values of collective pitch
and angle-ol-attack. BEven though the blades of the 33 foot roter were twisted
and preconed it is felt to have approximately met the requirements because it
was tested only at zero angle of attack and a collective pitch, at the three-

quarter radius, of © = 1.5%. Also, the blades of both rotors were stiffer

.7T5R
than those in use in most flying hingeless rotor helicopters.

The vertical motions equations were forced by large, easily calculated,
linearly independent aerodynamic and centrifugal external forces. The re-

sulting response was stable and well behaved.

The forcing functions for the in-plane equations, however, were nonlinear
functions of the vertical equations external forces and response motions and
were small in magnitude. The in-plane response was lightly damped and, near

resonance, of large magnitude.

High-speed gyroscope. - The high-speed gyroscope, in these analyses, was

mounted so that it always remained parallel to the swashplate. Slop and
elastic distortion in the linkages attaching its housing to the blade feath-

ering horns was assumed to be zero.

The gyroscope itself was assumed to have no vertical depth; all its mass
was assumed to be concentrated into a flat disk. With its diametral iner-
tia, or moment of inertia about an axis lying in the disk, denoted by IG’

its unforced equations of motion in stationary axis were:
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0 I, g f 20, 1, 0 l{zﬁ
where QG is the gyro rotation rate in radians per csecond
Mean aeroelastic derivatives. - If the shaft of a hingeless rotor were

fixed so that its response motions were zeroc and it was then given prescribed
steady rigid body displacements and velocities so that steady aeroilynan

states existed at the rotor, then the rotor would attain steady ogrillating
deformed shapes under the action of the motion-induced airloads ar. gyroscopic

forces. It would also develop steady mean and oscillating forces at the hub.

The mean aeroelastic derivatives are the rates of change of each mean
hub force component with respect to each change in shaft displacement and
velocity. Derivatives may also be found if the change in each mean force
component due to unit changes in each control system displacement and basic

geometric shape such as twist and precone is given.

Mean aeroelastic derivatives are often used in conjunction with the six
degree of freedom rigid body equations of motion for helicopter overall sta-
bility analyses in much the same way as wing aercelastic derivatives are used

in fixed wing aircraft stability analyses.

The mean and oscillatory aeroelastic derivatives may be calculated using
the rotor alone vertical motions equations, which in this study possess num-
bers of degrees of freedom equal to the number of blades. The aerodynamic
coefficients of the differential equations or the ratio of change of g~ =r-
alized force per unit displacement or velocity of each degree of freedsmn m st
first be calculated. The coefficients are divided into two classez: ~es).ase
coefficients and forcing coefficients. Response coefficients reprezent the
aerodynamic forces produced by motions of the degrees of freedom. Yor @ n7
coefficients represent those aerodynamic forces produced external to * o 1y-
namic system by gust angle-of-attack, rotor preconing, and biade twist and by

swashplate collective, which is not a degree of freedom in this analysis.
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TWIST SHAPE PARAMETER

+ twist is nose up and it is measured

ROOT (AT ¢ ROTATION)

from zero at the root (g rotation). It

should be noted that St is a rate of

change of twist angle per unit span;

therefore etip = BtR.

COLLECTIVE DISPLACEMENT

' ~ ™\ 7\
Not a degree of >
freedom but col-
lective forces are
used in forcing

derivatives.

The main difference between aerodynamic derivatives of fixed wing and
rotary wing aircraft is that the rotary wing derivatives or coefficients pos-
sess, as well as a mean value, parts which vary periodically with time (or
azimuth). In the case of the forcing derivatives, these merely add steady
oscillatory components to steady-state conditions. But the periodic parts of
the response coefficients alter the basic mathematics of the differential

equations.

The coefficients, analogous to the rigid wing derivatives of fixed wing
aircraft, relate the rotor forces, moments, and generalized forces to the
displacements and velocities in the various rotor degrees of freedom. The
coefficients are employed in equations relative to an earth-fixed axis system,
but are serially derived in this report from blade forces due to blade motions
through full rotor coefficients in rotating axes to the final fixed axes values.

Coefficients may be found for rotors with three to five blades.
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An examination of the stationary axis coefficients showed them to consist
of mean values, independent of rotor azimuth, and harmonic components at fre-
frequencies of integer multiples of the number of blades times the rotor
rotational rate. The lowest frequency multiples cf the three- and four-blade
rotors were 3P and 4P respectively, and were much larger in magnitude than
that of the higher multiples of rotor frequency. For this reason only the
amplitudes of the lowest freguency components, along with the mean value,
were kept in the analyses. The phase of the harmonic components, remained

essentially unchanged except at values of l/p approaching zero.

The mean aerocelastic derivatives based on rotor alone equations of mo-
tion, including aerodynamic coefficients just described, are displayed in
vector diagrams where changes in two moment or force components take place
with respect to one contrcllable motion. For example, the variation in hub
pitch and roll moment per unit cyclic pitch aeroelastic derivatives, with
blade stiffness and advance ratio, is shown as a map of hub moment vector

change.

Oscillatory aeroelastic derivatives. - The oscillatory components of the

aercelastic .derivatives, relative to stationary cocordinates, consist primarily
of first harmonic, ©bQl, frequency; where b is number of blades and 1 the
rotor rotation frequency. (Higher harmonic forccs are very small and are not

studied in this report.)

The ©bfi harmonic variations of hub and swashplate moment and shaft
shear execute fixed ellipsoidal patterns in a vector diagram such as that
used to display mean derivatives. The ellipse may be flat or circular or
have any aspect ratic between these limits and its major axis may be oriented
in any azimuth. For example, the shaft shear oscillatory forces produced by
a 3-blade rotor in stationary axis may be described as the following function

of azimutii, where Y and X are lateral and fore-aft forces respectively.

Y

1l

Y3C cos 3¢ + Y3s sin 3¢

X=X cos 3y + X

3c

sin 3y

3s
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This resolution of the forces may be transformed into rotating coordinates
to yield the two constant amplitude components, 2P and 4P, of vibration which

had combined tc form the 3P ellipse in stationary axis.

YR = A cos 2§y + B sin 2y + C cos by - D sin by

Xp

B cos 2y - A sin 2y + D cos 4y + C sin Ly

In rotating coordinates the force vector consists of two constant ampli-
thde parts one advancing at two per revolution (PP) and the other resressine
2t four per revolution (4P). These two force components fully describe the

ssceillatory forces, whether in rotating or stationary coordinates.

If the two components are kept separate and transformed back into sta-
tionary coordinates, each keeps its same advancing or regressing character but,

of course, changes back to 3P frequency.

Y A cos 3% + B sin 3¢ + C cos 3¢ - D sin 3V

X

B cos 3y - A sin 3y + D cos 3¢y + C sin 3y

The twe vector components are shown in Figure 9.

Y STATIONARY AXES
MEAN FORCE MINOR
.y \/VE.C??_R* < AXIS 2P CONTRIBUTION TO 3P RESULTANT
[ NN ~ l
\
\ ADVAQS:ING7\ . “
\ AN RESULTANT 3P OSCILLATORY VECTOR,
N POSITION ATy =0
LOCUS ‘/ REGRESSING L
OF 3P
RESULTANT i
VECTOR HEAD. - o MAJOR AXIS
(ADVANCING)
X 4P CONTRIBUTION TO 3P RESULTANT

Figure 9. Three-Blade Rotor Shaft Shear Force Variation With Time
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The 3P two-dimensional moment or force vibration may therefore be
completely described in terms of its advancing and regressive components
by specifying the amplitude and azimuthal heading, or the Y and X components,
of each at a particular instant of time or rotor azimuth position. In this
report the vibration components are described at rotor azimuth ¢ = O, that

is, with the number 1 blade pointed aft along the X-axis.

Tt is clear that the Y and X force components of each of the advancing
and regressing components of the 3P vibration at ¥y = 0 are given by the

following:

2P Contribution

Y. =A = Eig_;jiis
ep 2

X, =B = T3 " '3
2p 2

LP contribution

Y3C + X3s

Yup =C= 2

The complete épecification of oscillatory aeroelastic derivatives of

shaft two-dimensional forces follows the rules of shaft shear:

° (YZP’ Xop 3 Yip? Xup)
a(ehf %j’ Go,a

Residual forces. - The concept of residual forces facilitates the dis-

cussion.of experimental results. In a rotor wind tunnel experiment only the
following parameters may be controlled and varied: cyclic and collective
pitch GC, GS, 80 and angle-of-attack «. It is therefore only possible to
obtain experimental aercelastic derivatives of hub forces and moments and

blade forces with respect to these parameters.
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In rotors with precone, blade twist,and camber, there are "residual forces"

with the controls neutral, i.e., with GC = BS = 60 =g = 0. Knowledge of the
residual mean and oscillatory forces coupled with the mean and oscillatory
aerocelastic derivatives allows the recreation of all test conditions and ex-
trapolation and interpolation of them. In particular,cyclic pitch required

to trim hub moments to zero may be found,and these are displayed to indicate
the center of cyclic pitch variation during the tests. 1In addition,cyclic

pitch to trim swashplate meoments or any 2P or 4P vibration component to zero

could be determined from this data, if desired.

Tt should be noted that the residual forces for the T.5-ft-diameter rotor
are zero. It should also be noted that since no systematic variation of col-
lective pitch or angle-of-attack were made in the 33-ft rotor tests, the con-
tributions of the small values existing during the tests are added to the
residual forces. Because of the large cyclic pitch required to trim out the
effects of twist and precone on the 33-ft rotor it was not possible to actually
test at zeroc cyclic pitch under all rpm-forward speed conditions without over-
loading the rotor. At these test conditions the residual forces may not be
realistic, since they were obtained by extrapolation of a best fit plane through
the experimental data,and at the high rotor forces at zero cyclic pitch non-

linear effects may be important.
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VERTICAL MOTIONS EQUATIONS

Equations of motion are derived for a free flying rotary wing aircraft
having three body degrees of freedom, a main rotor with an arbitrary number
of blades (b),and a control gyro on the main rotor with two degrees of free-
dom. The body degrees of freedom are restricted to pitch, roll,and plunge;
the gyro degrees of freedom to pitch and roll only. Only one bending mode is
used for each individual rotor blade. Its shape is parabolic and in many
cases (in particular for a stoppable rotor vehicle) is a good approximation

of the first vertical or "flapwise" blade bending mode.

The derivation first develops the equations of motion of each single blade
in its own axis system rotating with the rotor. The equations, in four degrees
of freedom, contain matrices of inertia; centrifugal, structural,and aero-

dynamic coefficients.

Next, the independent sets of equations, one for each blade, are coupled
together and transformed into equations of motion of the total rotor, still
in rotating coordinates. Coefficients representing- swashplate springs and

dampers and rotor elastic mode structural damping are then added.

Following this, the equations in rotating coordinates are transformed into
stationary coordinates where the gyroscope, swashplate stationary axis springs,
and dampers and body terms are added to complete the homogenous linear ordinary

differential equations.

Lastly, the external forces applied to the system are calculated. These
forcing functions, occupying the RHS of the equations, are caused by control

motions or forces, precone, twist,and angle-of-attack.

Single Blade Equations of Motion

The single blade forced linear ordinary differential equatioms of motion
establish the condition of dynamic equilibrium between,the external generalized
forces and those produced by motions of the blade degrees of freedom. They

consist of sums of the products of coefficieﬁts and motions as follows:
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where
E
z
Ll =
z ec/u
Lé

CO1 I )
e AN
N (Fixed|
oFixed Igeom 5
geom
VB ‘ rotor precone
(fixed | ©
‘ = S rotor collective
fgeom o
4
Gt blade twist rate
ig gust angle-of-at-

L =) tack factored by
forward speed

and the square matrices represent the following

Bla e inertia

Centrifugal and structural stiffness

an
— (¥) Aercdynamic damping
Kl
2 ]
— (¥) Aerodynamic stiffness
Laﬁ
—aF‘ T
b Rlade aerodynamic and centrifugal
A Fixed forcing
L geom
Single blade inertia matrix. - The single blade inertia matrix represents

the relationship between accelerations in the degrees of freedom and general-

ized forces on the degrees of freedom due to the accelerations.
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b.m] r8 T
v Z
p.m o [#b] ] c/h
() | 8

Note:

The minus sign merely indicates
the presence of the forces on
the RHS of the equation in this

expression.

The blade generalized forces are as follows:

b.m. Blade root bending moment at the center of rotation, ft 1b.
\ Blade root shear at the center of rotation, 1b.

p.m. Pitch moment about the blade quarter chord, ft 1b.

H Blade flapping generalized force, 1b.

The l?g] matrix therefore is defined as follows:

Féb.m. ab.m. Ab.m. Ab.m.
38 3% 3bc/)y 38
v v v sV
38 37 a6/, 38
I ] -
[b Jp.m. Jdp.m. dp.m. dp.m.
38 dzZ a'éc/l+ 38
oH oH oH oH
38 3% e/, 38

For blades with mass centroids of sections distributed along the

d
quarter chord line, mass distribution given by d:

(r) and a local pitching

moment of inertia of the blade about the quarter chord of IO, the above

matrix becomes:

-
2dm dm
./'r Ir dr .ljra; dr
r
dm dm
[I]:f rﬁdr Edr,
b T
0 0
2 2
L r dm dr L dm dr
- R dr R dr

The matrix is symmetric.

L 2r EE dr
R dr

r dm
r
0
r ) QE dr
R dr
r
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Single blade centrifugal and structural matrix. - The single blade

centrifugal and structural matrix relates the generalized single blade forces

to displacements of the single blade degrees of freedom.

b.m. ’B \
Vv Z Note: Minus sign indicates terms are
0 T -{?’F'E] 5 on RHS of equations.
p.m. e/l
A (6 )
The matrix is therefore defined as follows:
B =
db.m. Ab.m, Ab.m, Ab.m.
v v v v
b
dp.m. dp.m. Jp.m. dp.m.
oB dz 39 Ple)
c/k
H 3H H 3
_BB dz aec/u aé i

The centrifugal part of the metrix may be formed from the inertia matrix

2
by factoring moments of inertia by Q and making the second row and column
zero. The structural part of the term é% is cobtained by substituting the

2 2
natural frequency squared, We s for the rotational frequency squared, £,

in the product with the flapping generalized mass.

—
r2.dﬂ dr O O E 2r dm T
. dr ./. R dr dr
r
0 0 0 0
] =
b 0 0 I 0
O
2 w\2
r dm & ry dm
R S VO S
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Single blade aerodynamic matrices. - There are three single blade

aerodynamic matrices. They relate root bending moment, shear, quarter-chord
pitching moment, and flap generalized force, to the velocities and displace-
ments of the degrees of freedom and to the fixed geometric shape parameters

of the blade.

The two response aerodynamic matrices are:

an an
{W (‘l’)] and -a?- (¥)

and the forcing aerodynamic derivatives in matrix form are:

aF_b_____ (y)
9 Fixed
geom
The two response matrices are similar in form to the centrifugal and
inertia matrices except terms in each are functions of azimuth. For example,

the aerodynamic damping matrix is as follows:

E m m b
Bl (y) By Belegyy Dby
38 3z 3de/), 3b
() & (y) X (y) ()
3F AB dz aec/bf 38
—2 ()] -
S0 3p:M- (y) 2p.M(y) 3p-M- (y) Bp-m.(y)
38 3z ade/), 35
S (y) M (y) A (y) A (y)
EE ¥z abe/), 3b ]

The forcing matrix, on the other hand, is not square. It has four rows,
one for each generalized force, and columns equalling the number of rotor and
blade fixed geometry descriptive elements. The fixed shapes considered in
this analysis have been: rotor precone BO, rotor collective pitch 90,

blade twist rate 6_, and gust vertical velocity ig.

t)
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In addition to aerodynamic forcing functions, the forcing matrix contains
terms due to centrifugal force acting on rotor blade linear flapping due to

precone and collective pitch.

The combined aerodynamic and centrifugal forcing matrix is as follows:

- T p— ) -1—
8b.m. 3b.m. db.m. db.m. 1 sin AOO
V) ) F= W)
BBO 3 o Bet Big
v Vv av 3V 0O 0 00
== (¥) == (V) = (¥) — (¥)
BBO BGO aet Bi
AF g
'—_b‘—(‘b) = : + lcF
3 Fixed aE°m'(¢) Ap.m.(w) dp.m. dp.m. [ YJ O cos AODO
geom BBO aeo aet Bi
g
aH AH OH aH 0O O 00
= (¥) — (¥) == (V) — (¥)
EBO 890 aet Bég

The elements of the aerodynamic matrices are evaluated at closely spaced
intervals of azimuth. They represent values of root b.m., shear, quarter-
chord pitch moment, and flap generalized force due to each of the displacements
and velocities of the degrees of freedom.and also the fixed geometric shapes,
and are found by integrating aerodynamic forces radially. These aerodynamic
coefficients are functions of advance ratio u and tip speed dynamic pressure,

2 qtip = p(QR)z, as well as, of course,the rotor blade detailed geometry.

Aerodynamic strip theory is used. That is, the flow relative to the
blade is resolved into components parallel to the blade quarter-chord line

and normal to it, section dynmemic pressure is based on the normal component

q = £y 2, and the angle-of-attack of the section « is measured between
n 2 n n

the normal component and the blade chord line. The effects of the radial flow

component parallel to the blade are ignored. The section 1lift is given as

daf = cl o qn cdr
o
where ) = gection lift curve slope
o
¢ = section chord, ft

dr = increment in radius, ft
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Induced inflow and unsteady aerodynamics have been neglected and tip

losses accounted for by the tip loss factor B.

The distributions of 1ift due to blade motions and geometric shapes are
integrated radially so as to yield the four generalized blade forces b.m., V,
p.m., and H at closely spaced intervals of azimuth. This gives the elements

of the three matrices as functions of azimuth.

The effects of the reverse velocity region were explicitly accounted for.

The aerodynamic center of the blade was assumed to shift to the three-quarter

chord point.

In the three matrices there are only three types of section angle-of-at-

tack; they are due to: section pitch, radial slope, and section velocity:
Bc /U

section pitch GO

radial slope )

section velocity 6
z
The increments of 1ift in the radial direction for each type of angle-of-

attack are as follows:

Section pitch: o ec/h + eo + Bt r

df =c¢c .« g (Qr + V sin w)g cdr

Ea n

This expression applies in the advancing flow region. 1In the reverse

velocity region the sign df the 1lift increment reverses.
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2
R- 1'«l slope: slope (radians) = Bo 4+ 8 + (—%) 6
R

_ - (slope) V cos §
n {Qr +V sin )

o

df = c, (-slope) V cos § g (Qr + V sin ) cdr
o

[his expression applies in advancing flow. The sign changes in the

. 2 . .
rf + (%) 65 + 2

_ velocity
n T T (Qr + V sin V)

reverc: velocity region.

Section velocity: velocity

ae = ¢, (-velocity) g (Qr + V sin §) cdr
o

And again the sign changes 1n the reverse velocity region.

The radial distribution of the lift increment d4df at each azimuth posi-
tion is then factored by the mode shapes of the four modes to yield the aero-
dynamic derivatives. The four mode shapes are (1) linear flapping, (2) ver-

tical displacement, (3) pitch moment arm about the quarter-chord line, and

_ al
b.m. —f rd_r dr
T

./ﬁ %é dr

r

(4) parabolic flapping.

<
I

af A .
p.m. = /(c - H) & 4T (reverse velocity region
T

only)
- r\e dt
SRVIUR
r

The above integrations at each of a large number of azimuthal positions

become the aerodynamic derivatives for the single blade.
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Rotor Equations of Motion

The single blade equations would permit the calculation of the independent
motions of each blade unrestrained at its root by the shaft or by attachment
to the other blades through the gyroscope. In this section, the restraints,
offered by the shaft to vertical and tilting motions and by the other blades
(through the swashplate) to feathering motions, are applied to the three in-
dependent blade equations causing them to be transformed into the equations

of motion of the complete rotor in rotating coordinates.

Following the transformation to rotor degrees of freedom in rotating
axes, the swashplate rotating damping and rotor flapping structural damping
terms are added. The rotor equations are then in a form to be transformed

to stationary axes.

Once in stationary coordinates, stationary damping, springs, and gyro-
scope terms are added to the swashplate and the body equations of motion,
complete with pitch, plunge,and roll inertia and aerodynamic terms, are added

to the rotor equations of motion.

Transformation of blade external forcing functions due to precone, twist,
collective, and angle of attack through rotor rotating coordinates and adding
swashplate control moments or displacements and body residual forces and mo-

ments complete the rotor airframe equations of motion.

Rotor equations of motion in rotating axes. - The pth single blade motions

are represented by the vector:

For a three-blade rotor, for example, there would be a corresponding

vector for all blades
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and it would contain 12 components, or degrees of freedom.

It : -~ possible to write the equation of all three independent blade

motions together as follows:

— -
B 1 [ 3 [~ ., aF ([
.o W b . 1
I n CF Ll - gl
b zl b zl aﬂl zl
. aF
I, N cF, {0t - —2 i
Zp Zp A, )
aF
: b
I M CF| |T e l
— . - o - -
oF ( aF
_Db il W __b 4
aﬂl Zq d fixed {fixed}
geom geom
S I A (R e
oMy 25 — P
3F d fixed
b 1 geom
8n3 23 an ,
L J ? fixed
- - geom

It has been shown in the section on kinematics that blade displacements

are related to rotor displacements in rotating coordinates by:

Therefore ihe vector of all blade displacements is related to the rotor mo-

tions by:
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() 7]

il D
1 21

4“22 r = Dz2 Bz or T]z - E)z] 8z
ﬂz3 DZ3

- I

and since the relationship between blade motions and rotor motions is purely

kinematic, then:

T]z N [Dz] Bz
On the other hand, the transpose of the [DZ] matrix relates the generaliz-

ed forces applied to the rotor degrees of freedom to the generalized forces

on the individual blades.

r N N
Mr rb.m.l
Lr Vl
Tr p.m 1
Mg 1
r L - - -
M b.m.2
P,
v
_ T 2
N S O
°p Py
H H
5er 2
b.m.
me3
Hé¢ v,
L 7
p.m.3
H
L3
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Generalized Rotor Forces in Rotating Axes

where Mr Rotor pitch moment ft 1b

Lr = Rotor roll moment ft 1b

Tr = Rotor thrust 1b

M9 = Swashplate pitch moment ft 1b
r

M¢ = Swashplate rcll moment ft 1b
r

Hé = Rotor collective flapping generalized force 1b
o

Hé = Rotor pitch flapping generalized force 1b
er

H6 = Rotor roll flapping generalized force 1lb.
¢

r

The two properties of the [b%] matrix permit the three uncoupled rotor
blade equations of motion to be transformed into equations of motion of the

overall rotor degrees of freedom in rotating coordinates.
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Rotor equations in rotating coordinates may be written more concisely

as follows:

(18, + (s, - [a )] &, - (2 (0] s,

= [A.F. (V)] B

7




The [AF (¥)] matrix contains aerodynamic forcing functions, primarily,
but it also includes centrifugal collective generalized forces due to precone,

Bo’ and collective pitch, 80.

Rotating damping, C due to feathering friction, and rotor flapping

R)
structural damping, Ygo mAY be conveniently added at this point. They form
a mechanical damping matrix relating rotor degree of freedom generalized

forces to velocities of the degrees of freedom

{generalized forces} = [Da] éz

[D%] a diagonal matrix is defined as follows:

[0 0o 0 0 0 O 0 0 0 ]
0 000 O O o) 0 0
O 000 O O 0 0 0
0 00 Cp 0 O 0 0 0
[Da] =]lo 0 0 0 ¢ O 0 0 0
0 00 0 0 2y, wgM 0 0
O O
O 0 0 0 0 O 0 2 vy wg Mg 0
8 "8
0 000 0 O 0 0 2 vy wg M5¢ a¢
L p—

The final equations of the rotor relative to rotating coordinates are

as follows:
(18, + o) &, + (8] 8, - [Ay W] &, - [ (6)]) 8, = [AF. ) £

where
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Transformation to stationary axes. - The transformation matrix relating

the rotor rotating degrees of freedom, BZ, to the rotor stationary axes de-

grees of freedom, BZ’ and discussed earlier, 1is sz].

Bz - [T%] BZ

The transpose of the transformation matrix supplies the relationship
between the generalized forces on the degrees of freedom in stationary coor-

dinates to the generalized forces on the rotating axes degrees of freedom.

{Generalized Forcesz} = [TZ]T {Generalized Forcesz}

The transformation and its derivatives and transpose supply the means of

transforming the equations of rotor motions from rotating to stationary axes.

The derivatives of the relationships between rotating and stationary

degrees of freedom are as follows:

Bz - [Tz] BZ * [Tz] BZ
B8

o) g e [ 5 2]

The equations of motion in rotating axes may then be transformed to sta-

tionary axes in the same fashion as equations of blade motion were transformed
into equations of rctor motion. The full transformation process is written

out and then the abbreviations permitted by rotational symmetry are shown:

[TZ]T [I]{ —Tz] .B.Z * 2. LTz éZ * Lsz BZ}

(BT B B
LB R e B B

L

—

= [r7F [a.F] £
]

The derivatives of the transformation matrix consist of derivatives of

the elements of the matrix. For example, [f%] is as follows:
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[ sinQt -cosQt O 0 0 0 0 0
cos 't =-sinQit O 0 0 0 0
0 O 0 0 0 0 0] 0
[’.I‘Z]:Q 0 0 0 -sinf?t -cosQt O 0 0
0 0 0 cos 1t -sinQ1t O 0 0
0 0 o) 0] o 0 0 0
0 0 C O-sinfit -cos(t
o o 0 0 0 O cos it - sinQ t]

and similarly for [iz]'

The inertia, centrifugal and damping aspects of the rotor are all rota-
tionally symmetric and are independent of rotor azimuth position v or Qt.
For this reason transformation of the matrices describing them to stationary
axes can be simplified by employing the values of the transformation, its
derivatives and its transpose at ¥ = O. The same result would be obtained
if transformation matrices at any other values of azimuth had been employed.

The transformation matrices at ¢ = O are as follows:

B 0 0 0 0 0 0 0]

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

r |0 0 0 1 0 0 0 0

[Tz(o)] = [Tz(o)] “lo o o o 1 o o o0
0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1]

[0 -1 0 0 0 0 0

1 0 0 0 0 0 0

0 0 0 0 0 0 0

[Tz (O)] _ 4o 0 0 o -1 0 0 0
0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 o -1

o 0 0 0 0 0 1 0
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The [Tz (O)], [TZ (O)] and [’I"z (O)] are employed in transforming the
inertia, centrifugal and structural, and damping matrices to stationary co-
ordinates. The transformation and derivatives varying with azimuth [%z (Wﬂ
and [TZ (¢)], however, must be employed in transforming the aerodynamic matrices

to stationary coordinates since they vary with azimuth.

Including the simplifications, the rotor equations in stationary axes

become:
(1] §, + [2 (1] [’I‘Z] + [Da]] 8, + [[1] [Tz] + [Da) [TZ] ¥ [s]] 8,
- [TZ (w)]T [AR] [TZ (w)] 8, - [TZ (w)]T [[AR][TZ (w)] + [4] [Tz(w)]] 3,

- [’I‘Z (q;)]T [aF] £

To the equations of motion of the rotor in stationary coordinates must
be added terms for swashplate springs and dampers to ground. The swashplate

rotationally symmetric spring and damper terms are as follows:

The final rotor equations in stationary axes including the above terms

are as follows:
¢ (115, +[c] 5 +[E] - [BR] 8, - )8, =[Fl ¢

and the matrices contain terms of the following kind:
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[I] Inertia

[C] Mechanical damping and gyroscopic

(E] Mechanical stiffness

[BR] Aerodynamic damping, function of azimuth
[B] Aerodynamic stiffness, function of azimuth
[F] Forcing functions

Complete Vertical Equations of Motion

The rotor equations and forcing functions have been derived in stationary
coordinates in the previous section. The gyroscopic terms are shown on page
58. In this section the body inertia and aerodynamic coefficients are derived
and combined with the rotor and gyroscopic equations to form the left-hand side

of the equations or the homogenous differential equations.

It should be noted that the term "body" refers to the complete non-
rotating configuration to which the rotor is attached. It includes the body,

nacelle, wing,and tail.

The rotor forcing functions, the body forces and moments existing at zero
angle—of-attack and swashplate control moments are combined to form the right-

hand side of the complete equations or the forcing functions.

Body Terms. - The body terms consist of inertia forces due to acceleration
of the three body degrees of freedom pitch, roll, and plunge, and aerodynamic
terms due to acceleration, velocity, and displacement of the degrees of free-
dom. In addition, there are body steady forcing terms due to c.g. offset,
aerodynamic forces at zero shaft angle-of-attack, due to gust angle-of-attack

and jet engine thrust.

Inertia. - The equations of motion of the rotor were derived with the
coordinate axes agssumed to pass through the center of gravity. With the c.g.
on the shaft centerline, 7Z forces (1ift) produced no pitch or roll moments

about the c.g.

It is now required to modify the equations to accept changes in c.g. posi-
tion both fore and aft, and laterally. (The XH-51A(C) has a fairly wide lat-
eral c.g. range due to vehicle asymmetry.)
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In aircraft work it is standard practice to consider the coordinate axes

to pass through the c.g. and the aerodynamic terms are altered to suit changing

c.g. positions.

In the case of the helicopter, it appears to be simpler to

leave the axes unchanged and modify the inertia matrix to suit the changing

c.g. position.

The following figure illustrates the changes:

ORIGINAL POSITION
OF c.g.

yA

\

v (AXEs)

v

AIRCRAFT)
AXES

!
About the c.g. axes (X , Y") the inertia forces are as follows:

IY'Y'

Moments about the aircraft axes (X,

c.g. axes as follows:

lz

S
o'

IET

'Z'|
\~

r =
Myoy
Mg

2

Y) are related to moments about the

-AX

+AY

LZ

r' N
Myrys
<Moo

J

(1)
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By the transpose rule the c.g. axis motions must be related to the

aircraft axes motions by

5 1.0 0 -ax| T (s
grp = 0 1.0 AY 3
zZ' 0 0 1.0 7
Substituting for |é&' in equation (1) and then transforming the
moments 3
to aircraft axes by equation (2) yields
[ [ ] [ =] ’--\
N&Y7 1.0 0 -ax| [ 1.0 0 0 &
Y'Y
MXX:> = 0 1.0 AY IX'X' 0 1.0 0 { ¢ \
Z ) | L_O 0 l.O_ B I:/_[_ L__AX AY l.O_‘ kZ)
and this yields
[ ]
%&’ ITY,+MAX2 MAXAY _MAX 5 )
- 3
MXXL _ | -Maxay Loy + MAY MAY JRI
z -M AX MAY M z
J L ] \ ./

[Ibody] Bz

Thus, with pitch and roll moments of inertia about the c.g. axes called
I,y 8nd I, and the mass of the body (but not blades) called M and
with the displacements of the c.g. relative to the shaft-centered aircraft
axes called Ax and Ay, the inertia terms of the aircraft body are as shown

above.

Aefbdxgamic. - The aerodynamic terms in the airframe equations of motion

are as follows for the unforced system:
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1 9, . 1 ;
= M- -M + M-} O =M - M 0 0 <)
0 0 vXl(e (q a) M 3] .
0 0 0 g} + 0 Ip O 3+ | o o ol (&¢=0
0 0 o 1z 0 o -iz z zZ 0 0 z
V o 6%

B 5+ [J 8, + [I ] 8 =0
RRbody:] z I: Rbody:l z body Z
Some small aerodynamic coupling terms may also exist but they have been

ignored.

Before these equations can be added to the complete rotor equations
(those which include the forcing terms on the RHS), the forcing and balancing
wing-body-tail-nacelle terms must be added to the RHS of the above equations.

It should be noted that the signs of the aerodynamic terms are such
as to convert them from aircraft axes to helicopter axes. Therefore, the

aerodynamic terms have been derived according to aircraft sign conventions.

YA
X

//"
\
‘2 (;/)\;Y %ﬁ\(@l\‘
Y
2

z /(b

X
AIRCRAFT AXES HELICOPTER AXES

Both are right-hand systems.

The RHS terms consist of gravitational attractive forces, gust angle-of-

= 0, the
rotor
change in body forces due to jet engine thrust, and a force correction term

attack forces, aerodynamic pitch, roll,and 1lift forces at «

due to rotor downwash and to correct balance error.
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dM

- 4+ M - + 4 — +
AXx oW Mcv st L I Fu AMO (q#,error)
= nWw -1 ¢ - L N CECN N AL (gx,error)
-Ayc.g. v %gust a=0 dFN N o ‘¥
= - W -2 ° o sz . -2 5 Az (q*, error)
- o  gust a=0 d.FN N o ’

- {Fbody} *¥Refers to downwash correction

The body aerodynamic derivatives and zero shaft angle forces and moments
are found by conventional aircraft methods for configurations with large

bodies, wings, and tails.

Gyroscope terms. - Absolute gyroscope motions, or motions relative to
8, @ combined with tilt

the earth, consist of tilt relative to the airframe

3.
e] (s
+
® ¢
Absolute gyroscope tilt can be written in a more convenient form,

)

of the airframe O,

absolute gyroscope tilt =

(€Q

] [8‘ 1 0o 1 © |
’ ¢ o 2 o 1 ?
<

]

?

- /

When accelerated or given a tilting velocity, the gyroscope generates

body and swashplate moments as follows:

— —_ () — = () Y
IG 0 IG 0] (S] 0 -2 QIG 0 -2 QIG =) M
o I, 0 I 3 2 qr 0 2 QI 0 : L
G G G G
\ R T S o
0 8 - - :
I, I, © 0 2 qar, 0 2 a1, | | @ Mg
o I, 0 I @ 2 Q1 0 2 a1 0 ? M
-G ¢ U) |[c G JU Y
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The left-hand side terms are added to the rotor body differential

equations to account for the effects of the gyroscope.

Complete vertical equations. - The complete equations of vertical mass

element motion with forcing functions consist of rotor equations, body equa-

tions,and gyroscopic equations. The complete set is as follows:
[I * Toody © IRR body * IG] By * [C * IR boay T CG] 5,
o[ gy 8- [or 0] B, - [ 0]
= [F (¢>] {£} + {Fbody} + {em}

Swashplate control moments {c.m.} have been added. They are applied in a
vector with all elements zero but the Me and M¢ swashplate moments. Ex-
ternal control moments may be applied to the free swashplate through them for

"closed loop" operation.

The equations represent the free flight of a feathering feedback gyro-

scope-stabilized hingeless rotor compound helicopter.
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IN-PLANE MOTIONS EQUATIONS

Equations of motion of the rotor blade - hub mass system in the plane of
the disk or the plane normal to the shaft are derived. The system is free in
the disk plane, or constrained by springs to ground. The hub mass may translate
longitudinally and laterally and it may rotate relative to the rotating axes.
Each blade is assumed attached to the hub at a pivot point located at a fraction
of the tip radius from the shaft. The distance depends on the blade elastic
dynamic in-plane mode shape. The blade in-plane motion about the pivot is as-

sumed to be rigid.

The number of degrees of freedom in the system is three for the body freedoms
and one for each blade; i.e., 6 for the three-blade rotor and 7 for one with
four blades. The rotor elastic degrees of freedom are collective (or all blades
together to give a shaft torque) lateral, longitudinal,and the reactionless or

differential collective or scissors mode.

The derivation first develops the equations of motion of a single blade in
its axis system rotating with the rotor. The equations, in four degrees of
freedom, contain matrices of the following coefficients: inertia or acceleration
terms, coriolis or velocity terms, centrifugal and structural or displacement
terms, and aerodynamic velocity and displacement terms. The response aerodynamic
terms are assumed to depend on the blade section drag coefficient at zero 1lift
and are very weak. The periodic parts may be ignored without significantly af-
fecting the blade response. This assumption reduces the equations of blade

motion to linear ordinary differential equations with constant coefficients.

The individual blade degrees of freedom are then constrained to take up

only those motions permitted by the overall rotor degrees of freedom. The re-
lationship has been discussed in the section on kinematics. The transpose of

the kinematic relationship matrix is then allowed to act on the individual blade
generalized forces so as to gather them into generalized forces on the overall
rotor degrees of freedom. In this way the three or four sets of individual blade
equations of motion are transformed into a single set of equations of motion of
the whole rotor in rotating axes. Terms are then added to account for the mass

and moment of inertia of the hub and blade structural damping.
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Following this, the equations are transformed into stationary coordinates
where non-rotating body mass and springs to ground (if tunnel mounted) are added

to complete the homogeneous or left-hand side of the differential equations.

The in-plane equations forcing functions or forces external to the homogeneous
set are next derived. The major portion of these forces is produced by forces on,
and motions of the degrees of freedom of the vertical motion equations. The re-

maining small portion comes from the azimuthal variation of blade section drag.

The major forcing functions are divided into two parts: vertical motions

induced and vertical aerodynamics induced types.

The in-plane forces caused by blade vertical motions come about because in
actual fact blade element masses also move slightly in the radial direction as
they take up vertical deflections. These small radial displacements and veloc-
ities cause in-plane centrifugal and coriolis forces - which are considered to

be external to the in-plane equations.

Essentially vertical section air forces actually have small components in
the plane of the disk and in the direction of the principal axis of blade lead-
lag motions. These components are carefully calculated to produce the other

major portion of the in-plane forcing function.

Single Blade Equations of Motion

The single blade freedoms are discussed in the section on in-plane motions
of mass elements. The vector of dispacement of the degrees of freedom of the

pth blade is:

The homogenous differential equations of the in-plane motions of a single

blade are as follows:
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(ol e,

- f -[Aln =0
o] oy~ P
where the square matrices represent the following:

Pl Blade inertia

CORPI Coriolis coefficients

thl Centrifugal and structural stiffness
Blade aerodynamic damping

Ap Blade aerodynamic stiffness

Forcing functions are treated in a later section.

Blade inertia matrix. - The blade inertia matrix represents the relation-

ship between accelerations in the degrees of freedom and generalized forces

on the degrees of freedom due to the acceleration.

(n.f. (g
a.f.pl 'v'p Note: Minus shows terms
{ = - |1 .. , on R.H.S.
s.t P v
Up b
p.t.p \cp}

The blade generalized forces are:

n.f. Normal force acting on blade, or pivot shear, 1b
a.f. Axial force acting on blade, or pivot tension, 1b
s.t. Shaft torque, or root in-plane bending moment, ft 1b
p.t. Pivot torque, or in-plane moment at pivot, ft 1lb
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The [Ipl

matrix represents the rate of change of generalized force per

unit acceleration. For example the (1,1) element is 9%;2; The complete
u
matrix is as follows:
" © Mro g, M, (rg .78
0 Mb 0 0
| -
1Y = r 0 I - e r
Mb C.g. bshaft Ib Mb c.g.
M (r -e) 0 I
2. -eMr b_, J
L ¢-8 Ibshaft Mb c.g. pivot
The Ip] matrix is symmetrical.
dm .
Mb = Blade mass = JfR — dr Note: e = pivot offset
dr .
e in feet.
r, g = Center of gravity of blade measured R
from center of rotation r -1 f dm dr
C.g. Mb A dr
Ib = Moment of inertia of the blade
shaft about shaft centerline
Ib = Moment of inertia of the blade
pivot about the pivot
Blade coriolis matrix. - The coriolis matrix relates blade generalized

forces to velocities of the blade degrees of freedom.

{ n.f.P \ (up
a.f.p Vp
po= - [CORP] Note:
s.t.p Vp
.t.
\P+%p c

0] -Mb 0 0
Mbrc.g.
0 —Mb rc.g. 0 0]

LO -M (rc.g.—e) 0 0

The coriolis matrix is anti-symmetric.

[COR ] - 20
p
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Blade centrifugal and structural matrix. - The centrifugal matrix relates

generalized forces to displacements of the degrees of freedom and includes

blade structural stiffness effects as well as rotating mass effects.

(n.f.
n.ft P up
'a.f. vp
< P = - |CF Note: Negative
’s.t. P vy indicates
p R.H.S.
.t.
\P"""p Cp
4 n.f. d n.f. d n.f. d n.f. |
du dv dv dag
d a.f. - d a.f. d a.f. d a.f.
CF _ du dv dv dg Matrix for
F d s.t. d s.t. d s.t. d s.t. one blade
du dv dv ag only.
d p.t. d p.t. d p.t d p.t
| du dv dv ac |
P 2 2 N
2 Mb 0 Q Mb rc.g. Q Mb(rc.g - e)
2
0 9l Mb 0 0
P 2
9! Mb rc.g. 0 0] 0
2 2
9! Mb (rC -e)0 0 -0 |1
-8 shaft
OIS N
pivot 8- Po = 0 Ppivot
— . d p.t. d n.f. —
The terms are all self-evident except perhaps it and —ac

93



Their derivations are as follows:

Forces due to §: —

L
—
r—f r

There are two types of forces produced by (. The force normal to the

undeformed position of the blade

)
éi_&;{; =r Qg dm sin 1
dldr dr

and the force normal to the deformed blade needed to obtain pivot torque

2

d (n.f.) . _ 2 dm .
Iar d =rQ 37 Sin (¢ - i)

Now it may be noted that {( r - e) = ir so that i = (1 - %) and

g -1i= % . Employing these two relationships and for ( and i small

d2 T 2 d
n.t. _ r Q m (l e)

dCdr - dr r
A2 dm
= i (r - e)
and d2 n.f.) 4 - ,qldm e
dfdr dr r
2 dm . . .
= - el Iir and the minus sign denotes a retarding force to

forward rotation about the pivot.

The two derivatives with respect to { are therefore

R
d n.f. _ dmdr _ -2
) fe(r‘e o M (g e

ok



R
dp_.t.:_2f .y dm
i Q A (r - e) i oF

2 dm 2 dm
or —Qf(r-e) (r—e)-d—rdr—ﬂ Er(r_e)ﬁdr

2
=+ [Ib -1 e My rc.g.]

pivot shaft

2

! Ibshaft Cﬁpivot ! Mb ) rc'g°>
It should be noted that the above is not exactly analogous to the %g
term of the vertical blade motion equations. It is, therefore, not possible
to include structural stiffness in exactly the same way. In the in-plane
formulation the pivot spring is always the same: kg ft lb/radian. Its value,
therefore, will not change with rpm. At zero rpm or {1 = O, the in-plane fre-

quency is given by

pivot
2
so that kg = wi Ib
-P- pivot
dp.t. |1 - (1 M er o - fo, °1 .
dg b b_. c.g. i b_.
shaft pivot Pnh -0 pivot
Blade aerodynamic matrices. - For the purposes of this study all aerody-

namic forces caused by in-plane displacements of the blade will be assumed

to be zero.

lA] =0
P
The only in-plane aerodynamic force which is not related to the essen-

tially vertical aerodynamic forces is the c or section drag at zero 1ift.

d

o
Abbot and Von Doenhoff indicate the 4 of the NACA 0012 airfoil to be .006.
ol
For purposes of thés study, to account for roughness and to partially compen-

c
sate the missing 5 an effective value of cq = .011 will be used. (This

figure suggested dcl by N.B. Gorenberg.) ©
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It is now possible to approximate the aerodynamic forces due to blade
in-plane motions. It will be assumed that the only forces con the blades due
to blade motions will be due to cd .

O

The blade aerodynamic damping motion [AR ] is as shown on the following

b
page.

Calculation of the elements of the blade aerodynamic damping matrix is
straight forward. The derivation of the é;fiﬁé term will be shown as an

example.

Aerodynamic drag (or negative force) per unit radius due to unit ¢

velocity is as follows:

dd

SURP S _.l dr

Due to minimum drag coefficient 4 the rate of change of normal force
per unit radius is: ©

d n.f. _ 1 . : 2 1 2
g T - cdo 50 (Or + V sin ¥ + t(r-e) )" c + cdo 5 P (Or + Vsiny) ¢
1 . 2 . :
-cy, 5P Qr + Vsin ¥) +2(Qr + V sin ¥) ¢(r-e)
)
.2 2 1 . 2
+ £ (r-e) |c + cqy 5 P (Qr+ vV sin §) ¢

O
22 2 . . .
but (° (r-e) is negligibly small compared to the other terms.

QEELEL = - cdo % P [2 E(Qr + V sin §) (r-e)| ¢

d2 n.f. -cy PC (r-e) (Qr + V sin V)

cif dr o}
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d p.t.
and the derivative —ag——— becomes:

R
d E.'t° - - ¢, pcf (r-e) (r-e) (Qr + V sin y) dr
ac o e
) 2 3 2
2 (R R,e R R ey s
= -cdopc [QR < - 2e §+2—>+ <3_'28§ +e>V31n¢}

In-plane Equations of the Rotor

Once the single blade equations of motion are available, they may be
assembled into a single uncoupled matrix. First, form the vector of all

single blade displacements:

= nxyg for a three-bladed rotor
il
xy3

The equations of motion of the three uncoupled blades become:

[1, ] ﬁxyl [cor, ] ﬁxyl
I2 ﬁxye + COR2 nxye
i Iy ﬁxy3 ) i CoRy. ﬁxy3
_CFl | Ty 1 rARl i nxyl
i . Ty > i AR2 ﬁxy o ( 0
L *3 ey 3 | AR?L T.]xy3

The'displacement derivatives assumed to be zero were not included.

The equation may now be transformed into rotor coordinates employing the
relationship between blade and rotor coordinates derived in the kinematics

section, namely:
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il = |D B
XY¥p Xy, Xy
or expand to three blades
[,
o ]
xv
.. = ny 8 or M = ID )
xy 2 Xy xy Xy xy
DXY
3
and since the relationship is kinematic
.= |p l 3
Xy xy Xy
and
- g o
nxy ‘ XY| Bxy

and employing the transpose of the [ny] matrix for the purpose of

gathering up single blade generalized forces and conVerting them into gener-

alized forces applied to the rotor degrees of freedom. The transpose relation-

ship is as follows:

n.f.l
a.f.l
s.t.l
( t
Yr P. 1
< |-
r n.f.2
Nr T a.f.2
H - D ) \
g - [XY] t
or { s.t.,
Hg Pte,
Yt |- - - .-
.f.
H Mo
QX
rJ a.f.3
s.t.3
.t.
p 3
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where the generalized rotor forces in rotating coordinates are as follows:

Yr Lateral force, 1lb
Xr Longitudinal force, 1b
Nr Yawing force, ft 1b
HQ Collective lead-lag generalized force, 1b
o
r
HC Lateral lead-lag generalized force, 1b
Yr
HC Longitudinal lead-lag generalized force, 1b
ble
r

These two properties of the ny] transformation matrix allow the three
uncoupled sets of single blade equations to be transformed into rotor equations

of motion as follows:

ny‘T I, [ny] 5y ny]T COR, - ] |ny] éxy
L COR,
1, COR,
[nyl ES 7 IDXYIBXY - [ny TLRl ] [ny]éxy = 0
CF, A,
cFy Ay
» _ | 3

With the equations written in this form it then becomes possible to in-
clude rotating hub mass terms and blade structural damping terms. The terms
for the rotating hub motions and rotor elastic mode structural damping are as
follows and may be combined directly with the rotor equations in rotating

coordinates:
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— . [.. ) s > 0 = ( )
M Vr My Yy
MR xr ZOMF 0] 0 xr
IR Ur 0 0 0 Ur
< ..y F
0 So 2V“Mgogo { &g
0 : OnuM
gy Y ¥yey gy
.. - )
L 9] gx Y CXCEJ { gx;
/ L
[ > /]
) M, © 0 0 0 0 Y,
2
0 9) M, O 0 0 0 X |
0 0 0 0 0 0 v _
FEN =0
0 0 0 0 0 0 go
0 0 0 0 0 0 gy
|0 0 0 0 0 0 | ngJ

The hub inertia terms and the rotor structural damping terms are defined

as follows:
MR Hub mass, slugs

2
IR Hub polar moment of inertia, slugs ft

Fraction of critical damping
w Natural frequency of mode at rpm, radians/second
Generalized masses of rotor collective, lateral and

M M M
gofo’ "CyCy’ CxCx
longitudinal lead-lag degrees of freedom.

And the combined equations may be written more concisely as:
S, . . . _
IIXYI BXY lCORXYI BXY lCFXYI BXY ‘[AR ‘ BXY ©
Xy
In a similar way to the transformation from blade to rotor coordinates
the equations may be transformed to stationary axes by employing the trans-

formation relation between rotating and stationary axes and remembering that

it is a function of time so that:
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R L
By Txy] éXY + [’fxy] 8y
VR éxy‘relﬂ én+[;ﬁ] Pxy

The transpose which relates the generalized forces in stationary axes to

those in rotating is as follows:

S el
xy x| Txy

v | ( Y
X Xr
N Nr
T
or { H. » = |T I { H )
go Xy gor
H H
gy ' gyr
H. H
=% | gxr

ol ol [l e [l 5] ol *2 ™[5l ]| e
o W LM L L | r
- o] IAny] M) e - Tl [AR,W] [Fr] oy = ©

And with the appropriate simplifications due to rotational symmetry the

prmt—

equations become, through the use of Txyl’ lTxy‘ and lTxyl at ¢ = O,
[Ixy] EXY " “COnyl +2 lIxyl lTxY” BXY
+ [lCny‘ + {COnyl ‘Txy] + [Ixy\ ['T'xyn By

) ITxy] [Any] !Txy;éXY i [Txyl [Any] [ixyl Pry T °
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Body terms. - Terms for the body mass and spring restraint to the tunnel

are combined with the rotor equations.

The shaft may translate laterally "y" and longitudinally "x" or rotate
"5." ©No other degrees of freedom involve motions of the shaft. Masses of
shaft or body attached to it therefore can cause inertia forces only in acting

on those degrees of freedom, the forces Y, X, N.

In the case of the N force the shaft is presumed to be torsionally unre-
strained by the transmission and engine - as though it were fluid coupled.
The engine applies a mean torque, only, to the shaft and free torsional oscil-

lations of the shaft are allowed.

The Y and X forces due to accelerations X and ¥ will be due to the

mass and moments of inertia of the helicopter body.

It is assumed that effective non-rotating masses exist in the plane of
the disk. One resists lateral accelerations and the other longitudinal. Their
magnitudes are different because they are based on rolling and pitching mo-

ments of inertia of the body as well as the body mass.

Springs restraining the shaft against lateral and longitudinal motions
are also employed. The terms for body or shaft inertia and springs may be

combined with the rotor terms and are as follows:

M 0 0 ¥ K 0 0

¥ Y N Y

0 M 0 X + 0 K 0] X = 0
X X

0 0 0 v 0 0 0 v

With the rotor (and rotating hub) removed these equations govern the roll

and pitch or, more accurately, the lateral and longitudinal natural frequencies

of the model in the wind tunnel.

The homogeneous equation. - Including the body mass and spring terms with

the rotor terms yields the full set of homogeneous  in-plane equations.
IIXY] By * ICORXY] By * ICFXY] By
b P
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In-Plane Forcing Functions

The in-plane forcing functions are produced by vertical motions of the
blades and through components of the vertical response and forcing aerodynamics
vector. Before discussing the aerodynamic forces causing blade in-plane motions
it should be noted that forcing aerodynamics in the in-plane direction are ap-
plied to the blades due to collective pitch, angle-of-attack, cyclic pitch,
precone, twist,and the flapping deflectlions and velocities accompanying them.
These in-plane components of the essentially vertical aerodynamic forces -

depend on two considerations:
1. Magnitude of the essentially vertical force

2. Angle between the 1ift resultant vector and the effective plane of

the blade in-plane response.

Because the in-plane velocities are relatively small,of the order of
10 ft/sec or so,they will not significantly alter the magnitude or direction

of the forcing aerodynamics.

The vertical motions eguations forcing and response aerodynamics combine to
yvield net local angles-of-attack relative to the flow component normal to
the blade leading edge. The local 1ift force at the blade element, if as-
sumed to be normal to the relative wind at that section (ignoring the drag
contribution to the aerodynamic resultant force) has a component in the di-
rection}of the in-plane response of that blade -- calculated in these analyses

in the vicinity of the blade section at the 3/U radius.

These in-plane (of the mode) aerodynamic forces along each blade may be
factored by the rotor mode shape for that blade, integrated and combined with
the similar generalized force contributions from the other blades to yield
the in-plane rotor mode generalized force. The generalized force varies with
time as the rotor turns through the azimuth and contributes to the forcing of
that in-plane mode. The same forces can also be factored by each of the other
rotor mode shapes to obtain the generalized forces in all rotor in-plane modes.
Body or shaft modes, or degrees of freedom, however, displace in a direction
normal to the shaft or vertical axis so their generalized forces must be cal-
culated relative to the disk plane rather than relative to the principal axis

of the blade-alone in-plane motion.
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Before leaving the aerodynamic in-plane forcing functions it should be
noted that there is an aerodynamic contribution that is independent of "z"
motion and forces. It is due to the drag coefficient of the section at zero

1lift 3 - Its generalized force is considered separately.

In deition to the aerodynamic contribution to the in-plane forcing func-
tions due to rotor response, there are inertia or mass-induced forces due to
blade vertical flapping motions. These depend only on the built-in precone
angle Bo and the sum of the contributions to the flapping motion of each
blade from the rotor flapping degrees of freedom. The in-plane forces are
due solely to displacements, velocities, and accelerations in the radial di-
rection of the elements of blade mass distribution. The inertia forces can
be factored by in-plane mode shapes to obtain generalized in-plane forces

which are then combined with the aerodynamic external generalized forces to

yield the net forcing function to the in-plane degrees of freedom.

In-plane forcing due to vertical motions. - The vertical motions degrees

of freedom are assumed to provide displacements parallel to the shaft only,

in framing the vertical equations of motion. 1In actual fact, however, elements
of blade mass take up small motions in the radial direction when the blade
bends vertically in its parabolic mode shape, especially when in the presence
of built-in blade precone angle. Figure 10 shows the small inboard (negative)

fi, 11

radial displacement "v" that accompanies the vertical displacement "&"

in

conjunction with built-in precone Bo

| ‘

G SHAFT

1

position of blade above plane = Bor + 6tip (é)
Figure 10. Blade Radial Displacement Due to Flap Bending
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The displacement, velocity, and acceleration of a lump of mass at station

"H_on

r" due to flapping displacement are as follows:

2 2
_KE) 8 4—3(5) L s .J 8, .
R o 3 \R/ R tip| tip
2 3
dv r L {r\° 1 ;
at ~ [(ﬁ) % "3 <§) R 6tip] “tip

dz_v__(s)z[a Lhrog ]z-; _(3)2&15 °
dt2 R o 3 R2 tip| “tip R/ 3 R2 tip

The above is the motion of station "r" due to flapping deflection, veloc-

<
1l

ity, and acceleration, in rotating blade axes, and is non-linear.

The non-linearity causes no great difficulty in this analysis since the
mass element motions are used only for producing external forces to the linear

in-plane equations of motion.

With the radial displacement, velocity, and acceleration of elements of
mass of the blades known in terms of tip displacement, velocity, and acceler-
ation it is necessary to find the motions of all blade tips in terms of mo-
tions of the rotor degrees of freedom in stationary axes. Then with blade
radial motions known in terms of motion of stationary axes degrees of freedom,
it is only necessary to find the single blade generalized in-plane forces due
to single blade radial motions and collect them by means of the ley]T matrix
and transform these to stationary axes by the [T]T matrix. The forces may
then be used in conjunction with thé aerodynamic forcing functions to find

the in-plane response.

The motions of the blade tips are determined from the vertical motions
response degrees of freedom by employing the transformation from stationary

to rotating axes and from rotor coordinates to blade coordinates,as follows:
T]z - [Dzl sz

and since BZ is known as a function of time, then ﬁz and ﬁz may be ob-

B

tained by differentiations of the above expression. From ﬂz, ﬁz,and ﬁz the

required blade tip displacements, velocities, and accelerations may be extracted.
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The pth single blade generalized forces due to radial motions may be

written in matrix form as:

(n.r. ] o 0 BN 8y o0 o | 6
5
. 3 R
2
a.f. p - a BoIb - 2 OZJb 0 0 BoIb % Ru Jb 6 2
5 3 > P
< }: R R R é
S.f 0 0 Pty 8 M 0 0 ‘ P
.f. 8
p 22 3 ;H— 5p .
208 g K 8
p.f. 0 0 5 Jo 3 b 0 0 P,
L P R b n 65 & +8
- R dppP P
R R
_ 2 dm _ 2 dm
where T —/ r o dr Jo = / r (r-e) Ir 4r
e b e
R R
_ 3 dm _ 3 dm
Iy —f ro dr Ke = / r° (r-e) s dr
e b e

Kb= [Rrhg—rﬁ-dr
e

and 6p is the tip deflection of the plCh blade, it is a function of azimuth

¥ or time Gt.

The generalized forces on the rotor degrees of freedom in stationary axes

N

are then found by [ n.f.

n.f.

IT |T lD ]T 4
Xy Xy s.t.

p.t.

I

GF
XYl

3
for a 3-bladed rotor. 3
3
3
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In-plane forcing due to vertical aerodynamic forces. - Three rotor forces

contribute to the in-plane aerodynamic forcing functions, 1ift or thrust,
pitch,and roll hub moments. The blade forces contributing to these three
rotor forces are assumed to be concentrated at the blade 3/4 radius. The 1lift
is assumed to be uniform arocund the azimuth, the pitch and roll moments smooth

sinusoidal distributions as shown in Figure 11.

The assumption that rotor pitch and roll moments are applied sinusoidally
is a fairly good assumption. Should the forces in fact be applied at a dif-
ferent radial station, the effect on the in-plane forces would be small. For
example, if applied at blade tips, the blade forces would be smaller due to
increased radius but the in-plane moment would not change significantly be-
cause the in-plane moment arm increases to compensate. Should the forces be
applied other than sinusoidally, it is unlikely that there would be a signifi-

cant change in the 1P or 2P components of in-plane force.

The assumption that the 1ift is applied at the 3/& radius is fairly good
at low advance ratio. At higher advance ratio it could be a poor assumption.
If.the 1lift were applied, say, at the blade tips, the in-plane forces would
be much larger than if the 1lift were applied at, say, the 50% station. Fur-
thermore, the 1ift could be applied in a 2P distribution, or humps at opposite
sides of the disk; or it could wander radially as it traversed the azimuth

and still be a steady 1lift.

These assumptions are used here because they simplify the analysis and
certain evidence suggests that, in fact, they are not bad for many cases.
Aerodynmamic forcing is generally a smaller contribution to in-plane general-
ized forces than are the coriolis forces and, therefore, can afford to be

less precise.

These assumptions allow the loading per blade to be written immediately
in terms of the Lift T, Pitch Moment M, and Roll Moment L. The 1lift on the
pth blade becomes:

2M  cos (V + V) + 2L
. 75Rb P T75Rp

T
L, =%

o sin (V + wp)

where p is the pth blade numbered clockwise viewed from above.
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X
Figure 11.

LIFT, T

PITCH MOMENT, M

_LL ]

ROLL MOMENT, L

Rotor Vertical Aerodynamic Force Distributions Assumed for
Calculating In-Plane Aerodynamic~Forcing
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With the blade loads specified at each azimuth point, it is only necessary
to resolve them into components normal to and parallel to the inclined in-plane
mode principal axis to provide the generalized forces for the overall rotor
lead-lag modes and to the plane normal to the shaft for overall rotor rigid
body modes. For the former, the in-plane axis will be assumed to be inclined
proportional to the feathering displacement with the constant of proporticnality

dependent on the rotor rpm.

IN-PLANE PRINCIPAL AXIS

Z AXIS
€ ROTATION .
k6
PLANE
NORMAL
TC)SPLAFT7 _ i

The 1ift at a section is produced by two classes of angle of attack:
Class I - due to rotation of the section relative to the disk plane or shaft,
and Class II - due to precone, flap deflection, flap velocity, and pitch, plunge
and roll rate of the disk. Only Class II angles-of-attack produce an inclina-

tion of the 1lift wvector relative to the shaft axis.

Under the assumption that the c is accounted for separately and the

d
section drag due to section 1lift is nggligible, the 1ift (and resultant)

vector is normal to the flow at infinity relative to the sections.

For Class I angles of attack the 1ift, therefore, is directed parallel

to the shaft axes. Class I angles of attack are:

O elc’ els’ and 6,r

With the application of Class II angles_cf-attack, even in the presence
of Class I 1lift, the total 1lift vector is inclined relative to the shaft axis.
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The inclination is equal to the sum of the Class II angle contributions at

the section. These angles are due to:

B> z, 60, 89> 6¢, %, & in stationary axes.

Contributions to Class II angles—of-attack from rotor flapping velocities
in stationary axes éo’ é@’ 5¢ are neglected in these analyses because only
steady cases are considered. Aircraft pitch attitude "o effects are included

with the z/V parameter.

The Class II angle-of-attack at station "r” due to the above is as fol-

lows:

SHAFT
WIND AT INFINITY t

REVERSE FLOW

DISK PLANE,7

WIND AT INFINITY
ADVANCING FLOW

The angle-of-attack is the angle between the wind remote from the section (at
infinity) and the chord line regardless of the direction of the wind, advancing
or reverse flow. This results in one equation for each contribution which ap-
plies in both advancing and reverse velocity regions. The Class II part is

that part between the wind at infinity and the plane normal to shaft "an."

The basic blade motions and fixed geometry shape that contribute to the
Class IT angle of attack, obtained from the stationary axes degree of freedom
motions, are as follows and depend on the azimuth location of the blade as

follows:

111



V cos ¥

B: on T T B fr +V sin ¥
3 _ r
B: oy B r + V sin ¥
z @ = - Z L
n Or + V sin {
62
6 g = - [2~R2VCOS *]
) “n tiplQir + V sin ¢
(2
3 o R
b Y T - 6tip Qr + V sin v

The net value of an due to all Class II contributors then is obtained
by factoring the blade motion column matrix by the Class II angle of attack

row matrix.

Class II angle-of-attack at station "r" on the pth blade:

]
-1 )
1

Vo, bip (2
r r
= + — + 1=
OL’np Qr + V sin (¢-+¢57 v cos (¥ wp): R2 v cos (¥ vp)|r lu(R ) j Bo
. Lo
6
: P
BP
In determining the - the value of radius "r" to use in these 3
analyses is r = .75R (by basic assumption). ép
P

It is now possible to calculate the in-plane aerodynamic forcing func-
tion. On the pth blade with aerodynamic "normal” forces indicated by "Lp"
and the angle-of-attack relative to the vertical axis, or shaft axis called
anp and the inclination of the in-plane principal axis given by xef, the
in-plane force at the 3/4 blade radius is given by:

In-plane force

= 1 / -+
F, Lp sin (ynp K ef)

i
P P

is shown resolved into the in-plane principal axes in Figure 12.
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IN-PLANE PRINCIPAL AXIS

L
SHAFT
AXIS

\ DISK PLANE

kO  NORMAL TO
SHAFT

RELATIVE
WIND

IN-PLANE FORCE Fi o

P

Figure 12. Resoclution of Section Lift into Blade In-Plane Principal Axis

It is assumed that o = + xef remains less than 10°, so that
b
sin (an + Kef) z:(an + xef), and Fip =L _ (& + k0, ).
p D D b
The last piece of information needed to complete the calculation of the
Fip is the value of Gf . It is obtained from the T, matrix by abstracting
1Y
the © p,the feathering pitch,and adding it to the collective pitch 60 and

blade twist at the three-quarter radius Gt{’.’(‘SR‘r so that:

6. =8 ot o+ et(.75R) so that:
P
In summary, the expression for Fip is as follows:
P
F =L + KB
ip = p (o e )

P P
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where
T em 2L .
Lp = [B " Trem o8 (V) # e sin (¥ 4 q’p)]

1 lor b e\ 8
— s =L | L

anp T Qr + V sin (V+V ) V cos (¢‘+wp)= 5 V cos (¢'+¢P)Ir=ll(R) J ©
P 1R bl 5

p

K = In-plane principal axis factor é
P

Bf =6p+60+.75R et :
D P

§
P

With the in-plane forces on each blade at the 3/4 radius evaluated at
closely spaced azimuth positions, it is then necessary to organize these into
generalized forces on the blades and collect these into generalized forces on

the in-plane degrees of freedom in stationary axes.

It should be noted, however, that in the foregoing discussion the gener-
alized forces on the blade in-plane degrees of freedom were found. This free-

dom was inclined to the plane normal to the shaft by the angle Kef and the

P
component of aerodynamic force in that direction was employed in calculating

the blade generalized force.

For the rigid body degrees of freedom Yy, x and v, however, the blade
force component contribution to the generalized forces must be in the plane of
the disk normal to the shaft. It is therefore necessary to calculate two Fip

one for K =0 and one for k.

This can be done as follows:

n.f. 1.0 0
P

a.f.p 0 Fip 0] ip

s.t. i .75R Pk=0"9, )
P

pote 0 75R-e
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and for the whole rotor these become:

foF g | = [Txy]T[ny]T (1.0 o0 0 o * ]
L -0
o o0 0 o o
TSR © 0 O v
= 0
0  .75R-e O 0 - . -
o 0 1.0 0« v .
-0
0 0 o) O o o o
o o0 TSR 0 - e
. . . +{SR-€ -

In-plane forcing due to minimum drag coefficient. - The in-plane forcing

function due to blade section minimums drag coefficient ¢ depends on the

d
o

normal component of dynamic pressure qn and the blade chord c¢. For the pth

d n.f. . o
dr dO qn

blade,

a.f. =0
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R

d n.f. r dr
dr

/
R
p.t. =[ d n.f. (r-e) dr

dr

s.t. =

Form the |GF as a column

l
| blade

4 s .t.2
GFblade) - p.'t:.2 }

The forcing functions on the stationary axes degrees of freedom are available
from

or |

_ T T
|stationary "[Txy] [ny] GFb%
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Complete In-Plane Equations of Motion

The complete set of in-plane differential equations include the
homogeneous equations in stationary axes and the forcing functions produced
by vertical motions, vertical equations aerodynamic forces, and section drag

coefficient.
IIXYJ By * ICORXY] By * ‘CFXYI By
—[ARX_Y] éxy . lAXYI By =

| ;
GFXY‘vertical aero {GFXY}drag coefficient.

GFXY} vertical motions

+

117



118



SOLUTION OF VERTICAL MOTIONS EQUATIONS

Linear ordinary differential equations of the vertical motions of the
rotor-gyroscope-airframe system have been derived in the foregoing section
for three-and four-blade rotors. Those coefficients of the equations which
depend on aerodynamics vary harmonically with azimuth at frequencies based
in the rotation rate of the rotor. The external forcing functions also vary

harmonically with azimuth.

In this section the equations are solved for the detailed harmonic or
vibratory response of the degrees of freedom. From these and the external
forces producing them, the shaft-and swashplate-transmitted vibration forces,
the azimuthal variations of tip path displacement and, in the case of the
free swashplate, swashplate harmonic tilt displacement wobble are determined.

Calculated and experimental results are compared where possible.

General Discussion

The solution of systems of linear ordinary differential equations of
motion possessing coefficients which vary harmonically with time is somewhat
more complicated than solving equations with constant coefficients. It is
the purpose of this section of the report to discuss the logic and
methods which permit the solution of such equations for their steady
oscillatory response to harmonically varying forcing functions. Such solu-

tions yield shaft-transmitted vibratory loads and blade load histories.

The basic logic will be illustrated by treating the simplest represent-
ative system of the type: an undamped single degree of freedom with period-
ically varying spring stiffness and forced at the period of the spring

stiffness oscillation.
Consider the equation:

W+ (A +Bcost)w=cost
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where A and B are constants and w is the dependent variable. The solution

w must contain oscillations associated with the period of the oscillator and

the period of the coefficients. Since both are the same, w may be represent-

ed by a Fourier series, if subharmonics are excluded. (later it will be

shown that subharmonics cannot exist in a true steady state for these

equations).

Let

W = ao + als sint + alc cos t +
then

W = als cos t - alC sint + 2a28
and

W= -a  sin t - 2. Cos t - hazs

substituting w and its derivatives in the

a sin 2t + a cos 2t + ....

28 2c

cos 2t - 2a sin2t ........
2¢c

sin2t - La_  cos 2t ........ .
2c

equation yields:

-a,  sin t - a,, cos t - hags sin 2t - Magc COS 2% venevnenoennnnnna ..
+AaO + Aals sin t + Aalc cos t + Aa2s sin 2t + Aaec COS 26 veeeensene
+Ba,., cos t + Ba cos t sin t + Ba cos 2t + Ba cos t sin 2t
e 1s 1lc 2s
+Ba2C cos t cos 2t + §a3s cos t sin 3t + Ba30 cos t cos 3t
+Ba) cos t sin Ut + Ba, cos t cos L4t + vuiiiinnnnn. vee..= cos t
hs Le

It is important to note that each term, in which products of trigono-

metric functions are found, may be simplified to the sum at two terms of

single functions by trigoncometric identities so that the above equations may

be simplified to:

-sinta, -costa -4 sin o2t 8,

1s lc

- b4 cos 2t By serrerenns e

Aa_ + A sin t a + A cos t a + A sin 2t a + A cos 2t a

0 1ls lc
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1 . 1 1 1 .
Bcost a + B(3 sin 2t) a gt B($ + 3 cos 2t) a,, + B(3 sin 3t

1

+ 2 sint) a + B(3 sin bt + L sin 2t) a

+

B(1 cos 3t + 3 cos t) a

2s 2¢c 3s

+ B(3 cos bt + L cos 2t) a, + B(3 sin 5t + L sin 3t) 8,

3c

(|1

+ B(3 cos 5t + 3 cos 3t) T R = cos t

All terms in common frequencies are arranged in separate equations in
order to permit a solution for the coefficients. Equating coefficients of

common fregquency:

(a)  (ay) (a) (a,) (a,) (ag) (ag)

O
1 =
Aao = B 810 0
. 1 . -
(A-1)sin t a;j, 7 Bsinta = 0
- l =
B cos t a (A-1l)cos t &, > B cos t 8 cos t
. ~ _ . f‘ 1 . _
B sin 7t 8y (A-l)sin 7% 8, 1 B sin 2t a3s 0
1 o - 1 =
> Bcos °t a (A-k) cos 2t a,, 5 B cos 2t 23, 0
In matrix form this becomes:
[ 4 0 B/2 0 0 o ] (a_ ) (0]
A-
0 (A-1) 0 B/2 0 0 8¢ 0
B 0 (A-1) 0 B/2 0 $af =92 ‘
0 B/2 0 (A-k) 0 B/2 a5 0
e 0 B/2 0 (A-4) o | 2y | O

It is obvious that the matrix could be extended to any desired number
of harmonics by analytic continuation, as in the following example, to four

harmonics.

121



A/2 0 B/2 0 0 0 0 0 2a_ 0
0 (A-1) 0 B/2 0 0 0 0 2, 0
B/2 0 (A-1) 0 B/2 0 0 0 a, 1
0 B/2 0 (A-L) 0 B/2 0 0 a J 0
2s _
< > = >
0 0 B/2 0 (A-L) 0 B/2 0 850 0
0 0 0 B/2 0 (A-9) 0 B/2 a3 0
0 0 0 0 B/2 0 (A-9) 0 23¢ 0
0 0 0 0 o} B/2 o} (A-16) a), 0
L - . 5_J \. J

It should be noted that the matrix is symmetric and also that the sine
and cosine terms are not coupled to one another, thereby allowing the equa-

tions to be rewritten as follows:

_A/e B/2 ’ 1(2a) (o)
a
(o]
B/2  (A-1) B/2 e |1
B/2 (A-L) B/2 a,, 0
B/2 | (A-9) 830 0
(A-1) B/2 ‘alst*o r
B/2 (A-4) B/2 8, 0
B/2 (A-9) B/2 835 0
B B/2 (A- 16—) \ab,sJ \0)
In this particular case als’ a5y a3s, B g srrrrreeees = 0. But of more

importance the harmonic sines and cosines may be solved for separately. This
is a consequence of the absence of velocity dependent terms and does not

occur in general.

A property that does generally occur for the helicopter equations, how-
ever, is the fact that the forcing functions occur only in the first harmonic.

In the case at hand the forcing functions exist only in the first two TOWS,
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i.e., for the mean value and first harmonic. The equations of the higher
frequency components are not forced; so high frequency coefficients may be
solved for algebraically in terms of low frequency coefficients, so that
ultimately the high frequency coefficients may be expressed solely in terms
of the two forced coefficients. Choosing the set of equations to the third

harmonic allows the property to be illustrated, as follows:

A2 B/2 (2ao\ [ O )
B/2 (A-1) B/2 alc}= 1 )
B/2 (A-U4) B/2 a5, 0
i B/2 (A-9)_| ka30} | O |
FEliminate a and a from the equation as follows:
3c 2¢c
[B/2] a,, + [4-9] a,, = O
if a) =~ 0 (if 8, 1s neglegible)
-1
soeg. = - [4-9] [B/2] a,,
and

(/2] aj + [2-4] &, + [B/2] a6 = 0

. -1
(B/2] al, + [a-4] - [B/2][A-9] [B/E]] a5, = 0

o

ape = - [[8-4] < [3/2) [a-91 7 [3/2)] " (n/2] o,
The equations may then be reduced to two unknowns:

Aj2 B/2 28 0
B/2 [[A—l] - [B/z][[A-u] - [/2] [A-9]7t [B/e]]'l [3/2]] 8, 1

It is interesting to inspect the detailed structure of the (2,2) element

(2] - [3/2] [(a-4] - [o/2) (w-0] " (/)] /2]
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It may be expanded to any number of harmonics n' by analytic

continuation and takes up the general form:

[[A-l] - [B/z][[A-u]-[B/z][[A-g] et
et - [B/Z][tA - (n1)°] - [B/é][A—ngcutoff] -1 [B/Z]:]-l [B/2] ...

Ceveaes ] -1 [B/2]] -1 [B/z]]

The value of the (2,2) element converges very rapidly as additional
harmonics are included. Generally speaking three or four harmonics give
adequate accuracy to the mean and first harmonic term and sometimes to the
second. As an example, solve for the harmonic coefficients of

w+ (A+Bcost) w cos t

for A = 2.0, B = 1.0

First evaluate the (2,2) element with two, three, and then four har-

monics at cutoff.

Number of Harmonics Value of
Considered (2,2) Element
2 1.125
3 o l.1272

n 1.12727

The equations to solve become a 2 by ? matrix system as follows:

A2 B/2 2a 0
B/2 (2,2) a1, i 1
- .285

and a =

alc = 1.14

With the mean and first harmonic known, the expanded set of equations
may be employed to determine the next few higher harmonics approaching the

n cutoff limit, but of course not exceeding it.

124



a5, = 2906

ch = .0228

The solution of the forced oscillation of the equation then becomes
Ww=-.285+ 1.14 cos t + .29 cos 2t + .023 COS 3t ciriennneanes .
and is shown in Figure 13.

[t is interesting to note that even though no mean force exists a mean
displacement »f the response occurs. Physically speaking, this is a con-
sequence of the negative excursion of the sinusoidal force acting on a reduced

value of stiffness.

This process is important in explaining the large effects on the mean
aeroelastic derivatives of including the harmonic coefficients in the ver-

tical motions differential equations at advance ratios greater than unity.

Why there is no subharmonic response. - In postulating a form for the

forced response of the system with periodic coefficients the foregoing
discussion has shown how the higher harmonic coefficients of the response

are coupled together so that, in fact, an infinite series of harmonics exists.

It is logical to consider whether the system does respond also in a
subharmonic fashion. This question is answered in a straightforward way.
Assume the series to contain subharmonic terms in addition to the superhar-

monic so that it appears as follows:

. 1 1 .
Ww=....8_ 8inst +a; cosst+a_ +a sint +a cost+ .....
1s ? 1e ? o 1s lc
W= .... 5 @ cos t/2 - L a sint/2 + O+ a,_ cost - a,  sint +..
s/2 c/2 1s lc

. 1, . - i -
Wo= ... -1 as/2 sin t/2 -1 ac/2 cos t/2 + O a;g sint - a; cos t + ..

Substituting displacements, velocities, and accelerations in the dif-
ferential equations adds the subharmonics to the existing terms. They

become:
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Figure 13. Steady
System
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cee. = % a5 /2 sint/2 - % a./p ©OS t/2 ...,

cos t/2 ....

cees A ag/p Sin t/2 + A 2 /2

... B ag/p COS t sin t/2 + B a,/p oS t cos t/2 ....

2

and expanded they are as follows:

cene - 2 /2 sin t/2 - 1 a./p CO8 t/2 ...,

veee + A 2 /o sin t/2 + A 8, /p COS t/2 ...,

ce.s + B 2 /2 (3 sin 1.5t - § sin t/2)
+Ba (3 cos 1.5t + L cos t/2) ....

c/2

With all terms assembled together, the matrix becomes:

(42 0o B2 O : : 1 2 (0)
0 (A1) o B2 . .| &y 0
B/2 0 (A-1) O : 8, 1
o B/2 0 (A-}4) y o 0
. . . © | B QR e
L S S R R - o

! B

A-g-= 0 .o

(I i75) a5 /o 0

| 1.B

| 0 (A“u+§) . . ac/2 0

l

. . .o . 0
[ I 4\ J \J

It is evident that the subharmonics are not coupled to the superharmonics
in any way. They could only be excited by being forced separately, and in
this problem that subharmonic forcing is absent.

It may be concluded that a linear system forced at the period of its
differential equation periodic coefficients possesses superharmonic response

by no subharmonic.
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It should be noted that the real system may not be strictly linear, and

in that case, subharmonic response is a distinct possibility.
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Three- and Four-Blade Rotors

The basic method developed in the general discussion will now be applied
to rotors having three and four blades. The solutions will be similar ex-
cept for the inclusion of the rotor reactionless mode in the four-blade
solution. This mode, of course, does not exist for a three-blade rotor. The
method that follows will be developed primarily with a four-blade rotor in
mind, but may be adapted to the three-blade rotor simply by dropping the
matrix rows and columns associated with the reactionless mode and converting

the 4P terms to 3P.

The nine degree-of-freedom equations in stationary coordinates are as follows:

[1){5} +[[D] + [Ab]]{!‘%}+ [[s] + [AB]]{B} :[[CF]+[AF]]{nF} + {M} (1)

where the matrices contain the following terms:

(1] inertia
[D ] mechanical damping and gyroscopic
[AB] aerodynamic stiffness derivatives
[S ] structural stiffness
[AB] aerodynamic damping derivatives
[CF] contains a centrifugal collective flapping force term due
to rotor precone
[AF} aerodynamic derivatives due to fixed angles and blade geometry
{M} forces and moments applied to rotor and gyro

In addition to mean values, the aerodynamic derivatives contain terms
which are functions of Wit, 2b Qt, ..... ..., Nt, where b equals the number
of blades. The derivatives that are functions of 2Hlt, ....., Nt will be
neglected, since their values are small compared with those of the mean and

the b per rev harmonic terms.
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The four-bladed rotor derivatives also have 2P, 6P, ..., (2 + LN)P
harmonic terms. Those higher than 6P will be neglected as they are rela-

tively small.

Expanding the aerodynamic derivatives in terms of their harmonics while

combining structural and mean aerodynamic terms, equation (1) becomes:

[I]{a}+[ﬁEo]+[E2c]cos 0t + [Ees]sin At + [Euc]cos it + (Ehs] sin Lt
+[E6C]cos &t +[E6s]5in 87t]{é}+[lFo] + [Fgcjcos At + [F, ] sin A
+[Fuc]cos it +[Fhs]Sin it +[F6C]cos &t +[?6S]sin 87t] {B} = [[GO]

+[C2C]cos At + [GZS]sin Lt + [Guc]cos Wt + [Gus]sin Wit + [G6C]cos it

+ g )sin € [fngd + fi} (2)
(For three blades, equation (2) would contain only mean and 3P terms.)

Equation (2) must be solved for B, which is a function of time. Let 8

be represented by a Fourier series:

B = Bo + 82c cos ¢ + 825 sin 20t + th cos it + Bhs sin Wt

+ B6c cos 6t + 863 sin €1t + BBC cos it + 888 sin &t

i f “en
+ Bloc cos 14t + BlOs sin 10 0t +

The series will be truncated at the 14P term. Coefficients of the higher

harmonics will be negligible,

Equation (2) will be solved according to whether the swashplate is fixed

or free and the vehicle is free flying or has its shaft fixed.

Fixed-shaft, fixed-swashplate solution. - The vector of displacements

is as follows:
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where 6d is the differential collective mode (also known as the reactionless

or the self-balancing mode).

For the fixed-shaft fixed-swashplate solution:

6 = 0 - @ = o
T - @ - ¢ - g
z = z = z = 0
§ = 6 - o0
I

6 and ¢ may take steady nonoscillating specified values. The body de-
grees of freedom are locked out of the equations. Thus the solution becomes
applicable to a vehicle rigidly mounted in a wind tunnel and controlled by

displacement inputs to the swashplate.

The displacement vector {B } may be divided into upper and lower portions:
(
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where the given value of {Bu} is:

9 o

It is required to solve for the displacement vector { 91} . However
{81} is complicated by the reacticnless mode. Its coefficients in the dif-
ferential equations include 2P and 6P components as well as the O and 4P
expected for the four-blade rotor. But since it is to be a steady oscillatory
response, each blade in turn must execute identically the same motion as the
blade ahead of it. It is clear, therefore, that hub moments, thrust, swash-
plate moments,-in fact all data measured relative to the stationary axes-must
contain only O, 4P, 8P, etc, harmonics. This means that the reactionless mode
must exercise vigorous 2P, 6P, etc, motion in rotating axes to attain a
stationary blade pattern in stationary axes. It should be possible, therefore,
in stationary axes, to represent the modal motions selectively as follows

rather than to employ all harmonics of all terms simultaneously. Let

[ %]

% 3,
fend = {8} =0

(o) 1%
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where
{Blu} = {611} = {611 } + {611)4-(:} CcOoSs mt + {611)48} sin mt
o
+ {éu&:} cos 8t + {GuBS} sin 8t +....

and

{éd} = {8d2c} cos Xt + {édQS} sin 20t + {6d6c} cos €t
+ {6d6s} sin &t + ...

By similar reasoning, the last column and bottom rows of the [AﬁJ and
[AB] matrices of equation (1) will contain only 2P and 6P terms of significance
(except for the on-diagonal term, which will contain only mean, L4P,and 8P
terms of significance). The bottom row of [Ap] in equation (1) will also

contain only 2P and 6P terms of importance.
Recalling that

o

g

equation (2) may now be rewritten in partitioned form:
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Recall that the vector of applied moments in equation (4) is:

(1)

M
-’

{M} may be redefined to represent reaction loads (aeroelastic response
loads). Thus the vector may be moved to the left-hand side of equation (&)
with no change in sign. Additionally, by moving the terms involving the

input vector {Bu} to the right-hand side, equation (4) may be rewritten:

r- 7 r - u - M ) -

M) 11, O i E, E13 ; F s Fl3 Gy [_Fll

6, 6, by

- Nat- B

o+ I, © ; + By Eyg ; HFop Fog . (" Gy et Foy {%u} 5)
d d

0

NEEREE B3 Ea3 P32 a3 %3] | 3

aed

Equation (5) may be separated into uncoupled upper and lower halves.
The lower half may be written:
& 6 6
oz O Woul |Fea Faz| \%uf [Faz Tozf % |2 Fo1
ot ot = {Me} - {Bu} (6)
. F u
0 I & E E ) F F 6 G F
331 4 32 733 d 32 733 d 3 31

This equation is the basis for determining the displacement vectors.
Once they are known, the aercelastic response loads can be found from the

upper half of equation (5), which is as follows:

-Gt - [ wfo] - [re ] [

53 {et - [F] {8y} (7)

where the complete right-hand side of the equation is known.
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Solution of forced equations of motion: - The problem now is to solve

for &, and 6d’ starting with equation (6).

6y = (5u)o + 6u cos Ot + 6u sin 4t + 6u cos 80t + 5u sin &t +
be Lg 8e 8s

6 =28 cos Xt + 6d sin 201t + 6d

cos Kt + & sin 60t + ...
d d2C 2s 6c d

6s

The procedure is tediocus but straightforward to solve for the values of
the coefficients of the series. Each matrix is expanded in its respective
harmonic parts. The series representing the solution is also expanded and
products of matrices and sclutions are found and all terms of common frequency
and phase combined and a truncated solution found. This is shown in detail

in the following paragraphs.

First, abbreviate the notation for clarity:

Let \
Kt = ¢
€N = ar subcripts
and > cl = 2
% = B sl = 2s
6d = & /
Therefore,

1
B8 =8 +B,. 1 cos 2t1 + B. 1 sin 2tl + B, 1 cos 4t + B, 1 sin Mt1+ . e
o 2c 2s he Lg

cl cos 3tl + 68 sl sin 3tl +...

§ = 6. 1 cos tl + 6.1 sin tl + 8
c 1s 3

1 3

and let the matrices be abbreviated.

|
Epp = M Fop = R Ce i Tl t
By = N Fpy = 8 [¢5 E - Fnl] o= ¥
B = F Fo = T
B3 = Fi3 = Y

136



Then equation (6) becomes:

6 =

o
|

= -0

S S

two components of the vectors and their derivatives are as follows:

B + B, 1-cos 2t1 + B, 1 sin 2t1 + 8, 1 cos Mtl + B8, 1 sinltl .
o 2c 2s Le bs

-2018 1 sin 2tl + 3118 1 cos 2tl - unls 1 sin utl + hﬂls 1 sin 4tt
2c 2s Le Ls

2 2 k
1 1 1 . 1 1 1
-4 Bch cos 2t - I 8281 sin 2t° - 101 thl cos 4t~ ...

2
- 1611 Busl sin Lt

1 1 1 1
6 8 i 8 ) i
lCl cos t + lSl sin t™ + 3C1 cos 3t + 3S1 sin 3t ...
g
1c
2 2 2 2

1 1 1 1 1 1 1
-0 6 é i - -
1o Cos t Q lsl sin t N 63cl cos 3t o9

. 1 1 1 1 1 1 1
n-é - 1) i 6
1 sin t™ + 1Sl cos t N 3cl sin 3t° + ¥ 3Sl cos 3t

. 1
6351 sin 3t

and the matrices become

M

It

N =

O
]

For

For

The

M + M, 1 cos 2tl + M. 1 sin 2tl
o 2c 2s :

1 . 1 1 . 1
Nlcl cos t + Nisl sin t77 + NBCl cos 3t + N3s1 sin 3t

1 1 1 1
1 . .
Plc cos t7 + Plsl sin t7 + P3cl cos 3t + P3s sin 3t

1 . 1
+ Qgcl cos 2t + Q2sl sin 2t

the R, U equations, substitute R, U for M, Q
the 5, T equations, substitute S, T for N, P

work becomes two matrix equations in the two unknown vectors, R, &

when expanded, in their harmonic components.
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Treating the B-Force equation first, matrix by matrix, yields the

following expansion from equation (8):
2 2 2
1 1 1 . 1 1 1
-0 12282cl cos 2t~ - K 1228251 sin 2t~ - 160 IZZBucl cos U4t

2
1 . 1
- 160 122BH51 sin 4t

-+

M + M_ 1 cos Ztl + M. 1 sin 2tl —3718 1 sin 2tl + 3718 1l cos 2tl
o] 2c 2s 2c 2s

_uols 1 sin utl + mle 1 cos utl
be ks

i 1 1 1 ’
1 .
+ M eos 7+ M Lsintt + Ny lcos 36+ Nyl oo Btl] [ als 1 sin L1
} 1 1 1 1 1 1
5 - xnts ' 5 _
+ 0 ls1 cos t N 3cl sin 3t + N 3S1 cos 3t + ....]

2¢c 2s

+]|R + R. 1 cos 2tl + R. 1 sin 2tl B + 8. 1 cos 2t1 + B, 1 sin 2tl
o} e} 2¢c 2s

+ 8, 1 cos Htl + B, 1 sin Mtl Founa
be Ls

| 1 ! 1 1 1
i &
+ Slcl cos t7 + Slsl sin t7 + 83 1 cos 3t7 + S3Sl sin 3t ] ‘ lcl cos t
+6llSlI’1t 631cos 31; +6 1sm3t +‘
= v, + v, 1 cos 2tt + Vol sin 2tT ’ ; - (9)

Treating the 6-Force equations yields, by expanding equation (8):

2 2 2 2
1 1 1 1 1 1 1 1
als 1 _als i gt s -qls ;
133 ( 1oL cos t lS1 sin t N 3Cl cos 3t RN 38l sin 3t7)
1 . 1 1 . %) 1 . 1
+ (Plcl cos t~ + Plsl sin t™ + P3cl cos 3t + P3sl sin 3t (—37 82C sin 2t
+ 3718 1 cos 2t1 - MOlB 1 sin htl + hﬂlB 1 cos htl ....)
2s he Ls

+ (Q + Q1 cos 2t1 + Q1 sin 2t )( Q 6 oL sin tl Qlélsl cos tl

1 . 1 1 1
-3 63Cl sin 3t7 + % 63s1 cos 3t7 ....)
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1 . 1 1 . l)
+ (Tlcl cos to + Tlsl sint  + T Cl cos 3t7 + T3sl sin 3t (Bo +

3

1 1 1 . 1
1 i L ....)
82C cos 2t~ + 8281 sin 2t~ + thl cos bt + Shsl sin L4t

1 cos 2tl + U. 1 sin 2tl)(5 1 cos tl + 6 1 sin tl
c s 1c 1s

2

+ <JO + U,

1 . 1
+ 8 Cl cos 3t~ + & Sl sin 3t ..J

3 3

= Lw 1 cos t5 + W. 1 sint® + W. 1 cos 3tT
1lc 1s c

3
+ W, 1 sin 3t1J 8 (10)
3s o
z
)
¢

Expanding the terms of the B-force and é-force equations and employing
trigonometric identities to reduce all terms to harmonic sines and cosines
of the first degree allows a set of simultaneous equations relating the
coefficients of the Fourier series to be assembled. Each equation of the
set contains terms of one harmonic component only. Dividing each equation
by its harmonic yields a set which can be truncated and solved for the

coefficients, algebraically.

The set of equations may be written in the following order. 1In all
following work the Fourier series is truncated at 14P. This allows the vec-

tors to be described in terms of the following harmonics:

s

B: B
o}

Boer Bogr Buer Pigr Bgesr Bes

b

5: & 6 8 6 ) 6 ) )
le’ "1s’ 3¢’ 3s’ 5¢’ 58’ 7e’ Ts
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Combining some of the Aij matrices yields:

— 1 h (
All Bl 1313 131l+ 0 0 0 0 (6u)O (Fu)o
le | B22 B23 Bzu B25 0 0 0 (6L)l (FL)l
I )
By | By, Byy By, Byg Byg O 0 (8u), (Fy)s,
B IB B B B B B 0 (6.) (F_)
ull L2 k3 Chh Ths e Ly <V L3p=< VL3> (12)
6
© :Bse Bs3 Boy Bss Bsg By Bog| |(Suly ©
O )0 Bgy By, Bgs Bgg By Begl [(Op)s 0
| 5
0 Io 0 B7u 375 B76 B77 B78 (u)6 0
o |lo o o Bgs Bgg Bgr Bgg| |(6p)s 0
| L J _ J
where
[1322] = !’Agg A23 etc.
| A0 f33
[B2l] = FAgl etc.
| 431 ]
5 ]
(GL)l et 5 Byt
= k (6u)2 = etc.
6lsl B251
By virtue of the zero forcing functions in the 4, 5, .......... equations,

the matrix may be reduced even further for calculation of the harmonic re-
5
L)5 b (

same fashion as shown for the one degree of freedom example. The reduced

sponse, by eliminating the (éu)h , (6 u)6 g eeeeveees terms in the

matrix then becomes:
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r~ - 4 ~ r -
All Bl2 Bl3 Blh (éu)o (Fu)o
By) BC,, BC,y BC,, (810, (Fp)y
< r = J r (13)
By, BD,, BD,, BD (84), (F,),
B PR PRy PR (o3 | (F)s5)

and relationships of the following type allow the calculations of the higher

harmonic components:

(Budy = O ()y v Coz (Ba)y v gy (8,
(GL)5 = C63 (6u)2 + C6h (6L)3 + C65 (6u)LL )
(éu)6 = C71+ (6L)3 + 075 (6u)h + C76 (GL)5
(60, = Cgg (u), + Cg ()5 + Cgp (Su)g

where the BC, BD, BE & cij are determined from values of Aij'

With the responses of the degrees of freedom found, it is possible then
to find the thrust, hub moment and swashplate mean and oscillating forces,

blade loads, and blade tip motions.

Hub moments, thrust and swashplate moments: - With the motions of the
degrees of freedom known it is possible to calculate the forces and their

harmonic components {M} from equation (7)

{up = ‘[Im ; O] fu ) [%2 51%3] %l
L GL] (7)
o R T A EN T (ALY
)
L

and these equations may be expanded in terms of all harmonic components and
as before these may be arranged in order of the harmonics. Grouping ac-

cording to harmonics the equation takes on the following form:
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o) o T r N . — -]
Mo D11 D12 D13 6‘10 (Fo)ll {BU} (Go)l {T]F}
S Dy Do Du3 tec 6L2C (Fuc )11 (Guc )1
Mys Dgy Do, Doy vvee 61,2S (Fi )11 (G )y
Mg Dg; Dgy Dgy «-- 6uhc 0 0
{ r=_ { > + (15)
e 6 0
Mg Dg) Doy Doy uus 0
Moe Pio1 Pioyo Dozt - 0 0
M, Dy, 4 D13,2 Dyggene - 0 0
T J L _ u _ L
o
1he
L
[ 1hs)

.

The form of the D's is similar to the A's of the Aij matrix.

Tip path motions. - With the shaft and swashplate both fixed against

tilting oscillation, the only motions that occur in the rotor system are the
deflection of the blades. This section, therefore, sets out to show what
these deflections are over the range of advance ratio W and flapping stiffness

ratio P for which these analyses are expected to be valid.

The calculations were performed employing the Lock number Y = 4.57 of
the 33-foot rotor. The nondimensionalized blade tip deflection 5/R, however,

should be valid for any rotor, with any number of blades, if it has the same

value of Lock number.

Figures 1l through 16 show the variation of tip deflection as the blade
travels the azimuth ¥ for those familes of conditions w = .5, 1.1, and 1.7
with members of each family of flapping stiffness ratios of P = 1.5, 2.0,
and 5.0.
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Figure 14 shows the rate of change of tip path deflection with respect

to elc, Figure 15 the rate with respect to els’ and Figure 16 shows the
residual tip path deflection occurring at elc = els = 0 and caused by the
blade twist, rotor precone, and the small collective pitch, © = 1.50,

.7T5R
present in the tests of the 33-foot rotor.

Mean aerocelastic derivatives. With the fixed-shaft, fixed-swashplate

equations solved for the motions of the blades, it is possible to calculate
the shaft-transmitted forces, blade airloads, and flapping bending moments
and the input data required for the in-plane equations of motions. This
section of the report is concerned only with the mean values of the aero-

elastic forces transmitted through the shaft, the mean aerocelastic derivatives.

Mean aeroelastic derivatives of the rotor are commonly used in arti-
culated rotor helicopter stability analyses at low advance ratio. For
gyroscope stabilized hingeless rotors, especially at high advance ratio, it
is usually not satisfactory to separate overall body motions from those of
the rotor gyroscope system. This makes the concept of mean aercelastic
derivatives of limited usefulness in these applications. Certain of the
derivatives, however, are easily measured in wind tunnels and provide an
excellent reference by which to judge analysis methods. It is for this

reason that they are treated here.

Theoretical and experimental values of rotor mean aeroelastic deriva-
tives are shown for the 33-foot three-blade rotor and the 7.5-foot four-blade
rotor. First the derivatives of hub moment, swashplate moment, and thrust

with respect to cyclic pitch for the 33-foot rotor, are discussed.

The theoretical variation of hub moment coefficient derivatives with
advance ratio w and flap frequency P are shown as vectors in the X, Y plane
in Figures 17 and 18. The derivatives are applicable to rotors of any
size, numbers of blades, and blade geometry, provided they have the same
Lock number (Y = 4.57) as the 33-foot rotor. Two sets of curves are shown.
The heavy lines show the effects of including the harmonic components of the
aerodynamic coefficients in the differential equations. The light lines

show the effect of leaving them out, as in the common practice with articulated
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rotors at low advance ratio. It is interesting to note that at advance ratios
well below unity, M<1.0, there is little difference between the two sets of
curves. This seems to justify the common practice of leaving out the

periodic coefficients. At advance ratio greater than unity, W>1.0, however,
the effects of the harmonic components are very large. A large bump de-
velops in the vicinity of P = 2.0, in the derivatives with respect to 913,
as the advance ratio increases above W = .8 so that the mean derivatives
become much larger with the periodic coefficients included. With P<1.8 the
effects are large, but the derivatives with periodic coefficients become

smaller than their counterparts without periodic parts.

Comparisons of theoretical mean aeroelastic derivatives with the experi-
mental values for the 33-foot rotor are shown in Figures 19 through 22,
In these plots the components of the derivative vectors are displayed
versus flapping frequency ratio P for tested values of advance ratio.
Small corrections have been made to the experimental points to bring
them to common values of advance ratio. There is general quantitative
agreement between theory and experimenmt but the fine structure of the
variation with P exhibited by the experimental data is not mirrored in the
theoretical results. This may be due to too restricted a mathematical

representation of the participating vibratory modes in the theory.

In Figure 21, experimental hub pitch moment aeroelastic derivatives due
to longitudinal cyclic pitch for the 7.5 foot diameter 4-blade rotor are in-
cluded with.the 33 foot rotor data for comparison. The derivatives are inter-
polated to produce values at advance ratio W = 0.5, 0.8, 1.1, and 2.0 and
are shown at four values of flap frequency ratio. It is interesting to note
that the 7.5 foot 4-blade rotor data at w = 0.5 and 0.8 compares very favor-
ably with values measured on a rotor of more than four times the diameter,

that possesses only three blades and has about half the solidity.

Figure 21 also shows a significant effect due to the blade first flap-
wise radial mode shape. The 7.5 foot rotor configuration with the stiff
flexure gives greater values of pitch derivatives, for the same w, vy, and P,
than does the configuration with the less stiff flexure. The effects of the

modal differences seem to increase with advance ratio.
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Swashplate moment coefficient mean aeroelastic derivatives with respect
to cyclic pitch for the 33-foot rotor are shown plotted in vector form in
Figures 23 and 24. It should be noted that in addition to being
divided by rotor solidity O, as were the hub moment coefficient derivatives,
the swashplate moment coefficients are divided by the blade sweep angle A
and factored by the swashplate mechanical advantage k. These further
factors serve the purpose of making the derivatives independent of A and k

at low advance ratio. At high advance ratio the derivatives become a weak

A
function of sweep ratio, J%%‘ (or ﬂ';7§), because of reverse velocity

effects.

Swashplate mean derivatives variations with P and W at vy = 4.57 are
similar to those of the hub moments. The effect of the cant angle ¢O = 60°
between the blades and the swashplate is apparent in the approximately 60°
counterclockwise skew of the derivatives relative to the hub moment deriva-
tives. As with the hub moment derivatives, deletion of the harmonic com-
ponents of the coefficients in the differential equations has little effect
at advance ratio less than unity and a large effect at values greater than

unity.

Comparisons of theoretical swashplate moment coefficient derivatives,
calculated with harmonic components included, with values measured
experimentally on the 33-foot rotor, are shown in Figures 25 through
28.

As with the hub moment derivatives the vector components are shown
versus flap frequency P at particular values of advance ratio Ww. Again the
agreement between theory and experiment is quantitatively good but the fine

structure of the experimental data is not seen in the theory.

The variation of the thrust coefficient CT/G with cyclic pitch is
shown in Figures 29 and 30 over the range of P and W for which the
theory is expected to be valid. The theory includes the effects of the
harmonic components of the aerocdynamic derivatives. Agreement between ex-
periment and theory is better for the longitudinal cyclic pitch because of

its greater effect.
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The residual shaft force coefficients for the 33-foot rotor, or those

existing at elc = 315 =¢o = 0 and © = 1.50, are needed to reproduce the

. 7SR
mean states in which the rotor was tested. Mean shaft force states may be
obtained by combining residual force with the forces produced by the two

cyclic pitch components of the test conditions desired.

The residual mean force coefficients, hub moment, swashplate moment,
and thrust were caused by blade twist, rotor precone, and the small col-
lective pitch angle 9.75R = 1.50. The theoretical variation of them with
flap frequency P at the specific values of W tested are shown in Figures
31 through 35. Experimental values are also shown. Good agreement was not
expected and did not occur. The reasons for the poor agreement are thought

to be the following:
a. Flow distortion caused by the body

b. Centrifugal flattening of precone not adequately described by one

parabolic mode
c¢c. Blade bending in the second flap mode due to blade twist aerodynamics
d. Induced inflow due to blade twist aerodynamics not accounted for

It should be noted that some of the residual forces could not be ob-
tained experimentally without overloading the rotor. They have been obtained
by extrapolating best fit plane (or rms plane) data to the zero cyclic con-
dition. To avoid giving a misleading impression, therefore, the residual
forces in conjunction with the mean aercelastic derivatives have been em-
ployed to reproduce a mean state of interest - the condition of hub moment
trim (or zero hub moment). Cyclic pitch angles needed to trim the 33-foot
rotor hub moments to zero are shown in Figures 36. The actual test values

of elc and 6. were centered about the trim values and generally did not

1s
exceed 3° or L4° amplitude deviation from them.

Residual harmonic aeroelastic forces are discussed later and comparable
cyclic pitch values may be found to trim or minimize vibratory loads. The
7.5-foot four-blade rotor hub moment and thrust coefficient aerocelastic

derivative theoretical values, divided by solidity, are very similar to those
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of the 33-foot three-blade rotor. The difference, about 10%, is due to the
larger lLock number, Y = 5.0, of the four-blade rotor compared to that of the
three-blade rotor, Y = 4.57.

For this reason the theoretical derivatives hub moment vector diagrams
with respect to Qlc and els are not repeated. In this section the hub moment
derivatives components of the vector diagram are plotted versus advance ratio

for the test values of flap frequency P.

The following derivatives are plotted:

3Cp/ o aCy /0

6 8
0 1s 0 1s

3Gy, /© 3Cy /0

e
° 1c aelc

aﬁ/o a%/c

L] 08
o

o}

oC, /o oCy /o
o« 3o

and comparison with experimental values is shown in Figures 37 through Lk,

It should be noted that residual forces for the cantilevered blades with

no precone are theoretically zero.

The 7.5 foot 4-vlade rotor test procedure and experimental data are

discussed in detail in Reference 17.
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Oscillatory aercelastic derivatives. This secticn of the report is

devoted to the presentation of calculated and experimental values of shaft
and swashplate - transmitted oscillatory forces for the fixed-shaft, fixed-
swashplate condition. Shaft shear force is a consequence of in-plane motion

and is discussed in the section on solutions of in-plane motion equations.

In the section on mean aercelastic derivatives it was possible to
discuss three- and four-blade rotor results together, when suitably nondi-
mensioned, since the results did not depend on the number of blades in the
rotor. For oscillatory forces transmitted through the shaft and swashplate
however, the number of blades determine the frequency and amplitude of the
result. For this reason three-blade and four-blade rotors are treated

separately.

The theoretical and experimental results for the 33-foot three-blade
rotor are presented first. These are followed by the results for the

7.5-foot four-blade rotor.

The theoretical harmonic response aercelastic derivatives of hub and
swashplate moment coefficient with respect to Olc and Gls, divided by solidity,
are presented in vector diagrams for the 33-foot three-blade rotor. In station-
ary axes the hub moment oscillations contain only 3P oscillations but these are
conveniently thought of as having been produced by 2P advancing and 4P regres-
sive oséillations relative to coordinates rotating with the rotor. The 2P ad-
vancing contributions to the 3P stationary axis hub moment derivatives are shown
in Figures 45 and 46, and over thé ranges of P and w for which these analyses are
expected to be valid. Figure 46 showing the variations of the hub moment coeffi-
cient vectors, divided by solidity, with repect to els shows that at low values
of advance ratio, say W = 0.5 for example, and at low values of rotor blade
stiffness ratio, say up to P = 1.4, that the 2P contribution to vibratory force

is small compared to the mean hub moment produced, as seen in Figure 17, It

A
consists at P = 1.4 of nose-down pitch moment of about tsgglg1 =

I
w

whereas the mean hub moments generated at the same condition a [ Cm f]

d lo;
and[é%gl—] = .34 or not much more than about -E%;of the mean hub momen%
1s
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At P values typically employed in conventicnal hingeless ratio helicopters,

i.e., P = 1.2, the vibratory contribution would be negligible.

It is interesting to note, still at W = .5, that if P is allowed to
reach the neighborhood of 2.0 so that the first flap mode is in resonance,

the vibratory contribution can become larger than the mean hub moments

produced [%%EZE] = -.2 [g%£lg] = .6
2c 2c

1s 1s

Should the blades be made very stiff, say P = 10, then the vibratory
component reduces somewhat but not to as low a value as occurs at low P

values.

The same trends continue as advance ratio, u, increases except that the

vibratory contribution grows more rapidly than the mean moment éapability.

The 2P vibratory response with respect to elc (Figure L45) follows the

same general trends as did the component with respect to els.

The theoretical hub moment 2P vibratory derivatives with respect to
elc and els’ shown in Figuresi5and 46, are replotted separately in Figures
47 through 50 versus flap frequency ratio P for the several values of advance
ratio W employed in the wind tunnel tests of the 33-foot rotor. In these
plots, comparisons are made with experimental data and it is seen that the

general trends are predicted well.

The 4P contributions to the 3P stationary axis hub moment derivatives
with respect to Blc and Gls are much smaller and less well defined than the
2P contributions. They are displayed in Figures 51 and 52 in general areas
for each value of advance ratio, to the same scale as the 2P contributions
and are disassembled and displayed versus P in Figures 53 through 56 for

the tested values of advance ratio.

The experimental values are very small at low P values and larger at
high P values as are the theoretically predicted values, but agreement is

erratic.

The swashplate harmonic moment derivatives with respect to elc and els,

in the 2P contribution to 3P stationary axis moments, display similar behavior
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to the hub moment derivatives. As with the mean aeroelastic derivatives,
the 60° skewing of the swashplate derivative ahead ofothe hub values due to

the cant angle wo = 60° is evident again in Figures 57 and 58,

Figures 59 through 62 show the 2P components of the swashplate
derivative vectors plotted versus P at the tested values of W and compares
them with experimental data. Although there are not many experimental points

the theory agrees in sign and order of magnitude with the experimental data.

The 4P contribution to the 3P stationary axis swashplate derivatives

with respect to 6 o and els are shown in Figures 63 and 64 ., The detailed

1
variation with P is complicated but within relatively small areas at each
value of W. The areas are shown., The detailed variation with P and & of
each 4P component is shown in Figures 65 through 68 compared to ex-

periment, Agreement is comparable with the 2P swashplate moments.

Rotor thrust oscillation due to cyclic pitch applicatioﬂ is next shown
theoretically for the 33-foot 3-blade rotor - no experimental data is
available. Thrust oscillationsoccur in stationary axes as harmonics of the
product of number of blades and shaft rotation rate Wi, Harmonics higher
than the first are believed to be very small for this rotor; therefore only

the first harmonic 3P components are shown.,

The sine and cosine components of the thrust coefficient divided by
solidity, Cp/0, aeroelastic derivatives with respect to elc and Gls,are
shown in Figures 69 through 72. It should be noted that at ¢ = O the

position of number one blade is aft.
It should be noted that the sine component due to els and the cosine
component due to elc both peak at a flap frequency ratioc of P = 3.0.

The residual harmonic forces remaining when elc =6 =o = 0 and 6

1s 5R

= 1.5° are shown in Figures 73 through 82.
The two components, sine and cosine, of the thrust coefficients, divided

by solidity, Cp/0 produced by 8 = 1.5, 8,R = -9.43°%, ana B_ = 2.25°, are

T5R
shown in Figures 73 and T4 versus flap frequency ratio P for values of

advance ratio W tested. No comparison with test data, however, is available.
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Theoretical hub and swashplate coefficient residual 2P and 4P moments
are similarly displayed in Figures T3 through 82, and compared with ex-

perimental residual data.

It should be remarked, in concluding the three-blade case, that the
residual mean and harmonic rotor shaft forces may be combined with shaft
force derivatives factored by the appropriate cyclic pitch angles to fully
reproduce the complete dynamic state experienced by the 33-foot 3-blade

rotor under any tested condition.

In summary, a complete rotor shaft and swashplate moment and force
steady oscillatory state may be assembled for any combination of cyclic pitch
components, within the linear range, for the 33-foot 3-blade rotor from

plotted coefficients as follows:
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The nondimensional derivatives are applicable to any three-blade rotor

at the same values of ¥, P, and u.

Four-blade rotor oscillatory aeroelastic derivatives, in stationary axes,
contain harmonics of the product of number of blades and rotation rate b f
or 4P. Higher harmonics 8P, 12P ...... are negligible and are not considered
in this report. The thecretical variations of the 4P sine and cosine com-
ponents of thrust coefficient divided by solidity, CT/U, derivatives with
flap frequency P and advance ratio p are not shown. The derivatives with

respect to elc and 6 however, are much smaller and center about the 4P

1s’
resonance of blade flapping instead of the 3P as was the case with the three-

blade rotor. No thrust oscillation experimental data is available.

It should be remembered that sines and cosines are relative to ¥V = O

with blade number one pointed aft.

The theoretical variations with P and w of the 3P advancing rotating axes
components of the 4P stationary axes hub moment aeroelastic derivatives with
respect to Slc and els are shown in vector form for comparison with the equiv-
alent components of the three-blade rotor, in Figures 83 and 84. Again the

components are somewhat smaller and centered about different blade resonances.
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Advancing 3P Hub Moment Vectors Due to Unit Longitudinal
Cyclic Pitch, at ¥ = O, for L-Blade Rotors with Y = 5.0



For comparison with experimental data, the pitch and roll components of
the hub moment cyclic pitch derivatives are replotted versus advance ratio
4 at the specific values of P tested and are shown in Figures 85 through 88.
All data is for a blade Lock number Y = 5.0. In addition, the hub moment
component derivatives with respect to collective pitch 90 and rotor angle-
of-attack o are also shown in a similar manner and are compared with experi-

mental data in Figures 89 through 92.

Agreement of theory and experiment is quite good where the derivatives
are of large magnitude. For the 7.5-foot four-blade rotor, blade twist and
precone were zero. Therefore rotor hub force residual harmonic components

were theoretically zero.
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Fixed shaft, free swashplate. - Fixed-shaft, free-swashplate tests at

high advance ratio were performed only on the 33-foot 3-blade rotor-gyroscope
system. For this reason analyses are limited to this rotor configuration —

although the results are couched in a general fashion.

In discussing free-swashnlate gyroscope-stabilired systems, it becomes
apparent that the rotation rate and size, or diametral inertia, of the gyro-
scope and the feathering inertia of the blades as well as the blade forward
sweep angle become important parameters. That is, as well as advance ratio u,
lock number Y and flap frequency ratio P, the major parameters needed to de-
scribe the fixed swashplate, fixed shaft response of the rotor, it is neces-
sary to consider further nondimensicnal parameters that control the free-

swashplate behavior.

The most notable component of the motion of such systems, especially
those employing high speed gyroscopes, is the precessive mcde of the rotor-
gyroscope combination. (The nutating mode natural frequency can be as high

as POP and is therefore not significantly excited.:

The precessive mode advances and in stationary axes is of low frequency,

typically of the order of P-1. If the ratio of its frequency to the shaft
rotation rate can be preserved, say in a scaled model test in which the ad-
vance ratio, flap frequency ratio, and Lock number of the blades have also
been preserved then the nondimensional feathering response, control mode
stability, and rotor loads of the full-scale rotor should be faithfully

reproduced.

The precessive or control mode natural frequency in stationarv axes,

neglecting the effects of blade flapping, is given in Reference 15 as:
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where we = control mode undamped natural frequency rad/sec

2 = rotor rotation rate rad/sec

QG = gyroscope rotation rate rad/sec

IG = gyroscope diametral moment of inertia slugs ft?

If = IO +_AQ Ib = blade feathering moment of inertia slugs ftp
k = mechanical advantage

b = number of blades
f = aerodynamic swashplate moment per unit swashplate tilt

ft-1b/rad

To preserve the ratic of control mode natural frequency to rotor rota-

tion rate(uf/ﬁ, it is only necessary to preserve the ratio,

bI
2 paYel £
Q (( _SZ - l) IG + >

An approximate expression for f is given in Reference 14 for a three-

blade rotor. It may be factored by % to make it approximately represent

rotors with any numbers of blades,

H
R
wlo
no

Q_.TTAPQR? %+?—u+£u2]
K 3

Since u is separately preserved, no account of it is required in the
control mode preserving parameter. In addition, if the slope of the blade
"

section 1lift curve is expressed as 'a and replaces the 2w in the above ex-

pression, then the part of "f" dealing with u

JERETaE

W
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may be dropped from the expression leaving the parameter which preserves the

control mode freguency Yo

v = Feathering Lock number

It is also necessary to establish nondimensional ratios for blade

feathering friction C_ and swashplate stationary axis damping Cs' These are

R
as follows:

C
k = i
xc - ‘ ).
R Ab oop g
k
Cs
and k =
C Ab i
S —
n Pecr R
where C = GSwashplate feathering friction in rotating coordinates
R /
ft-1b/rad/sec
Cg = Swashplate damping in stationary axes, ft-1b/rad/sec

In summary, the nondimensional motions, stability and response of any
free-swashplate, fixed-shaft rotor are defined if the following nondimen-

sional parameters describing the rotor-gyroscope system are known:

Advance ratio u
Blade flap frequency ratio P
Blade Lock number Y
Blade feathering Lock number Yf
Feathering friction coefficient kCR
Swashplate damping coefficient kCS
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It should also be noted that, although not necessary for stability,
shaft-transmitted forces and higher harmonic blade motions and loads alsc

depend on the number of blades b.

The solution of the equations of motions of the free-swashplate, fixed-

shaft system for motions and shaft transmitted forces follows:

For the free-swashplate solution:

O = Ié'::)el = O
¢ = Q:@ = O
Z = zZ = 2Z = O

The swashplate tilt angles 6 and ¢ are degrees of freedom, in contrast

to the fixed-swashplate solution of the previous section.

The two solutions differ mainly in the definition of the upper and lower
portions of the {B} vector. ©Since the swashplate tilt angles are now degrees

of freedom, they are included in the {Bg} vector:

®

©
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Note that:

Pt =

and:

For solution, equation (3) simplifies to:

N
In oy @ 7
I'll.' L
o D I,

23 .
where:

]
S
|
"
1
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The {7@ l* vector of rotor loads will be moved to the left-hand side of
equation (16) with no change in sign, thereby becoming reaction moments. The
{2?9} vector of swashplate moments will be retained on the right-hand side,

in which case they remain applied moments. Equation (16) becomes:

1

(.} in. (17)

“a

m L ¢ 1. Elrofig )
b ;
oV + |1, o ;-ut + e B ).L
0 “y o
01 o, B
© 33 3 T3

Pz Fig b
| ey

+lF.. F. ) =l s
= ,(d‘

K‘,%: T 33 (2

3

The preceding equation may be separated into two uncoupled parts. The

lower portion becomes:

1 o 5 E B ; FoE ‘ G .
¢ u T IR u T3 u 4 :
H + . ! + e (18)
0 I ; E. © . yoor 6 G 0
33 d 333 d 3033 d 3

from which the displacement vectors may be determined. The known displace-
ment vectors may then be used to get the response loads in the upper part of

equation (17), as follows:

The solution of equations (18) and (19) proceeds in like manner to the
prior section. The differences areminor and are due only to the differing
matrix sizes and the somewhat different forcing functions of equations (6)

and (18).

Free-swashplate effects may be compared with those of the locked swash-
plate only if the calculated cases are similar. It would not be reasonable,
for example, to compare rotor shaft force derivatives, fixed and free, due
to collective pitch or rotor angle-of-attack. They would be basically differ-
ent due to the trimming effect of the free swashplate.
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For a valid determination of the higher harmonic effects of the free
swashplate on the shaft transmitted vibratory forces, the fixed-shaft free-
swashplate system should be caused to change cyclic pitch, one component at a
time, by Jjudicial application of swashplate control moments. A comparison
could then be made between the rates of change of shaft and swashplate
forces with respect to unit changes in cyclic pitch for the fixed and free

swashplates. Differences could then be logically ascribed to freeing the
swashplate.
The speculation that the swashplate motions, which should have

occurred during the tests, were suppressed by high values of swashplate

stationary axis damping was also investigated by calculating results with

kc = kc = 0 as well as with the nominal values observed during bench
R, . s
testing.
Tip path motions and swashplate wobble: — The rates of change of non-

dimensional tip path motions with respect to each of the cyclic pitch com-
ponents were not measurably affected by freeing the swashplate, even in the
absence of swashplate damping and feathering friction., In addition, the

swashplate wobble was very small.

This calculated result occurred at all conditions of rotor rpm and for-
ward speed for which the system was stable. Inspections of the experimental
data tended to confirm this theoretical finding. However, directly compar-
able cases were difficult to find and the result was obscured by the free
swashplate's ability to neutralize random very low frequency perturbations in

the flow field.

The theory and experimental data indicated that mean and oscillatory
aeroelastic force and moment derivatives for the stahle rotor-gyroscope sys-

tem were not significantly affected by freeing the swashplate.

It should not be inferred from these results that no swashplate param-
eter Ye (feathering Lock number) and gyroscope inertia and rpm values exist
which will reduce vibration. Preliminary studies by Dr. G. J. Sissingh
(Reference 16) suggest that careful tuning of rotor-gyroscope systems can
result in reduced vibration. No attempt, however, is made in this study to

verify his predictions.
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Free shaft, free swashplate. — Solution of the complete rotor-gyroscope-

airframe equations for the motions, shaft-transmitted loads, and blade section
forces is the objective of the free-shaft, free-swashplate calculations.

These calculations are somewhat simpler than the previous analyses since

none of the degrees of freedom are suppressed.

The solution produces loads on free-flying aircraft in steady flight.

The body degrees of freedom of the system are not restricted.

This solution is the simplest of the three types of application. Again,
it differs from its predecessors mainly in the definition of the { B} vector.
In this instance, {Bu} , which is a vector of the locked-out degrees of

freedom, does not exist. Thus:

The solution will simplify to the form of equation (4) without the top
row and first column, which is:
E. E & F__ T 5 G
uf o2 723 uf 22 " 23 ul 2 {')ZF}+{"Z}(20)
G 0

a By Bz (8 3o Fa3 a 3

I,, © &

0 I3z [[8

For the present applications, the vehicle will be controlied by moment
inputs to the swashplate. Consequently there will be no loads applied to the

hub such that the loads vector becomes:
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Equation (19) is solved for the displacement vectors in like manner to

equations (5) and (18) of prior sections.

No aeroelastic response derivatives may be determined for the free-

flight cases.
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SOLUTION OF IN-PLANE MOTIONS EQUATIONS

Stability of In-Plane Motions

Before undertaking the calculation of the steady oscillatory response of
the in-plane blade-hub-body-spring system to its external forcing functions,
it is advisable to examine its stability and modal behavior in the unforced
state. This is done by arbitrarily letting the right-hand side (RHS) of the
equation be zero. The left-hand set (LHS) or homogeneous equations may then
be solved for its eigenvalues, or frequency and damping, and eigenvectors, or

mode shapes,

The damping characteristic of each mode of the system must be negative
for stability and the system must be stable for realistic calculations of the
oscillatory response to forcing functions. The natural or unforced frequen-
cies of the modes vary with rotor rpm and since the modes are stable but
lightly damped they experience resonance with rotor forces when their frequen-
cies coincide with the b or 3 per revolution harmonics. The rpm's at which
the in-plane modes intersect the 3P line are therefore important since they

may lead to severe rotor loads.

The following sections present the values of the rotor in-plane param-
eters employed in the 33-foot 3-blade rotor analyses. Then the types of
modes such a system possesses and how its frequencies vary with rpm is

discussed.

In-plane parameters for the 33-foot rotor. —

Blade mass Mb = 2,52 slugs
Blade c.g. radial position rc.g. = 9,00 ft
Position of blade pivot e = 2.50 ft

Blade moment of inertia, about shaft Ibshaft = 253 slugs ft2
Blade moment of inertia, about its pivot Ibpivot = 15 slugs ft?
Blede natural frequency, nonrotating wip. = 53,2 rad/sec
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Blade section drag coefficient Cdo = 0,011

Rotating hub mass M = 17.8 slugs
Rotating hub moment of inertia IR = 6,72 slugs ft?
Structural damping fraction Y = 0

Body effective lateral mass My = 66 slugs

Body effective longitudinal mass Mx = 110 slugs
Body lateral spring Ky = 682,000 1b/ft
Body longitudinal spring K, = 235,000 1b/ft

In-plane modes and frequencies. — The number of modes equals the number

of degrees of freedom since the body is attached to the wind tunnel by springs

and 1s therefore not free.

The modes of the system at zero rpm consist of one rigid body rotation of
zero frequency, one collective in-plane mode of high frequency, in which the
blades and hub rotate in opposite directions and four blade-body lateral and

longitudinal modes.

The four blade-body modes are of greatest interest and at zero rpm are
real, or all elements in each mode keep the same relationship to one another
throughout the period of oscillation. The elements change amplitude and sign

but keep the same distribution. The four modes are sketched in Figure 93.

The modes resemble two of those measured; however, the frequencies cal-

culated are somewhat higher.

Modes of the rotating rotor, in stationary axes, contain real and im-
aginary parts. That is, the modes have different shapes at different times
during the period of oscillation., This variation can best be seen by exam-
ining the modal vectors in the imaginary plane. The actual shape at any
instant of time is given by the projection of the vector components in the
real axis. A construction of the real shape at regularly spaced intervals of

time provides a '"'moving picture" of the mode throughout its period.

The four rotor modes are shown in Figure 9L at rotor rpm of £50. Two

modes are practically uncoupled body modes and two are the rotor advancing
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and regressing modes. The fact that modes are advancing or regressing can be
determined from the vectors in the imaginary (i-r) plane by noting that they

keep constant magnitude while rotating counterclockwise or clockwise through

the period of oscillation. The projection in the real axis of the advancing

mode, for example, shows X to be positive at the initial time so that the

mode essentially appears as follows:

\\\\‘\\; ,////// Ng

One quarter of the period later Cy_is positive and éx = 0 and the mode

shape appears as follows:

It is obviou.. that the blades are precessing in the same direction as the

rotor rotation or are advancing.

The variation of the unforced rotor frequencies with rpm is shown in Fig-
ure 95. It should be noted that modes intersect the 3P line at rpm = 128,
160, 220, and 275. Only the regressive mode intersection of 3P did not
excite measurable oscillations in the rotor. Large chordwise oscillations of

the blades were noted at the other intersecting values of rpm.
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BLADE LOADS

The determination of blade section 1lift and flapping bending moment
azimuthal distributions from calculated rotor external forces and response
motions is discussed in this section. Theoretical flap bending distributions
are shown compared to experiment at two radial stations on the 33-foot,

3-blade rotor.

For the fixed-shaft 33-foot rotor both experimental data and theoretical
results are analyzed so as to provide the rates of change of flap bending
distribution with respect to cyclic pitch components and the residual bending
distributions due to rotor fixed geometric parameters when cyclic pitch is

zero.

For the XH-51A rotor, experimental azimuthal distributions are avail-
able from existing flight test conditions. These provided net or combined
effects of cyelic pitch and rotor fixed geometry for comparison with theory.

Correlation with the present theory was very poor and is not shown.

Principles Invclved in Blade Ioads Determination

Blade section 1lift and flap bending are found from the displacements,
velocities, and accelerations of the degrees of freedom produced by the
vertical motions differential equations when solved for steady oscillatory

response to external forcing functions.

Bending moments at blade stations are not found from the curvatures of
the blade. Far too few modes are employed to make this a reasonable pro-
cedure. Bending moments are found by integrating the aerodynamic and inertia
section forces factored by the moment arms to the station from the station to
the blade tip. The blade mode shape primarily affects inertia acceleration
and centrifugal forces. The aerodynamic forces are largely independent

of mode shape. For these reasons fairly accurate flapping bending moments
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were predicted at blade stations near the root at high rpm and at all stations

at low rpm desplte the fact that only one flap bending mode was employed.

The actual procedure employed to calculate the blade loads azimuthal

distributions is indicated below for the three-blade rotor. A similar pro-

cedure was used for the four-blade case. The blade-force-at-station-r

column matrix is defined as follows:

.

BM

v

{Fb} = { M
r

M

SL

\

N\

bending moment at staticn r
shear at station r

= pitching moment
feathering moment

section lift at staticn r

[Fb}r - [[Q,,(r,w)] +[CFb(r)J] {nb} + [Qﬁ(r,w] [ﬁb}

¢ ] i) [arte,] o]

Blade forces are calculated from blade deflections, velocities, and

accelerations and external forces. The matrices in the blade force equation

contain the following terms

aerodynamic, displacement contribution to blade
section forces

aercdynamic velocity contribution to blade section
forces

aercdynamic and inertia external forces
centrifugal contribution to secticn forces

acceleration contribution to section forces

Elements in the blade forces matrices are calculated in a way parallel

to that employed in calculating coefficients in the differential equations.

The vectors of blade b deflections nb and fixed geometric shapes Mg

‘are defined as follows:
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The blade "b" vector and its derivatives are determined from the overall
rotor displacements, velocities, and accelerations relative to rotor coord-

inates through the use of the restraining transformation matrices.
n = ]
b Dzb_ BR

T :
b = LDzb BR

ﬁ M 1 3
b zb BR
and the motions in rotating coordinates depend on the motions in stationary

axes through the time dependent transformation [T] .

B = T8

R S
BR = T BS + T BS
BR = T BS + 2T BS + T BS

and BS is the vector of degrees of freedom of the equation in stationary

axes; the output of the steady oscillatory calculations.

and is itself a function of azimuth.

B =8B +28 . cos 3% + B, sin 3 + 860 cos 6V + 865 sin 6V

3s
2Lkg



Blade Flap Bending Moments, 33-Foot Rotor

On the 33-foot 3-blade rotor, flap bending moments were measured at
% = .217 and .590 (stations 13 and 118 inches respectively) at 80 knots

forward speed over a range of rpm. At % = .217, moments on the three blades

were analyzed and presented in nondimensional form. The measurements showed
a common basic behavior and provided a check on each cther despite fairly

large differences between the blades. At = .596, bending moment measure-

R
ments were available only on blade number 2.

The test cases analyzed are shown in the following table.

Forward

Speed

{Knots: RPM ke P v
80.59 197.2 .399 1.35 L.sv
82,76 153.2 .528 1.53 L.57
82,78 100,2 .808 2.03 .57
82,68 72.1 1.121 2.64 L.57
82,88 38,0 2.132 4,67 L, 57

At each radial station for each test conditicn, bending moment distri-
butions caused by approximately a dozen combinations of cyclic piteh were
analyzed. Best fit planes (rms fit) of each harmonic compenent versus the
two cyclic pitch angles supplied rates of change of bending moment harmonic
component with respect to each cyclic pitch component and a residual value

at elc - els = 0.

From these, bending moment azimuthal distributions per unit value of
each cyclic pitch component and the residual were prepared. These were then
compared with theoretical values. All bending moments were presented in the

b . .
form = Cb.m. where Cb°m° is defined;:

bending moment

b.m. D(QR)E ”R2 R
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For purposes of comparison the azimuthal distributions of bending moment at
the two radial stations due to longitudinal cyclic pitch els are shown in Fig-

ures 96 through 105 for the five tested cases in the order given in the table.

It is interesting to note, at high rpm, in the first two cases, that the
bending moment at % = .596 is not correctly predicted at all, where, as the rpm
reduces over the last three cases, the agreement between theory and experiment
improves. This is thought to be due to the single parabolic mode shape employed
to represent blade flapping deflection. The tip region, at high rpm, would the-
oretically be deflected upward too far and would induce a negative bending moment

at a point in the azimuth where a positive bending moment occurred physically.

At low rpm, on the other hand, tip deflections and centrifugal forces are

very small and most of the blade bending moment is produced by aerodynamics.

Figures 96 through 105 also show the tranéition of the distribution from an
almost sinusoidal form at P = 1.35 and 1.53 to heavy two-per-revolution oscilla-
tions at P = 2,03. At the latter condition the blade is in damped resonance with
its 2P exciting forces. At the P = 2.64 condition light three per revolution

oscillations become evident and at P = 4.67 four per revolution become evident.

Figures 106 through 115 show the variation of the azimuthal distribution pro-
bending moment at % = .217 and .596 due to unit lateral cyclic pitch elc over the
range of tested cases. Remarks regarding the variations with longitudinal cyclic
pitch apply in general. However, the change in phase due to the change in cyclic

pitch component may be noted.

Figures 116 through 125 show the bending moment azimuthal distribution pro-
duced by precone BO = 2.25 degrees, blade twist etR = -9.43 degrees, and collec-

75R = 1,5 degrees, with cyclic pitch and angle of attack zero elc =

els = a = 0. These plots include the centrifugally induced bending moment due

to precone and collective blade flapping, 60> and at high rpm, the first

tive pitch 6
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two cases, are suspected of causing the deviation of the mean bending moment
from the experimental values. At low rpm the effect is not gquite as

pronounced.

The residual flap bending moment distribution roughly resembles the
negative of the bending mecment due to elc' Trimming bending moments to zerc
therefore could be approximately accomplished by an application of positive

elc.

Reference 3, Figure 5 show + elc to be the larger of the cyclic pitch
components required to trim hub moment to zero, although fairly large values

of - 6 are also required.

1ls
In summary, the theory predicted the essential features of the tending
moment distributions at the inboard station at the five combinations of T

and B tested at a Lock number Y = 4,57,
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Figure 96. Blade Flap Bending Moment per Unit 615, 33-Foot Rotor,
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Figure 97. Blade Flap Bending Moments per Unit 635, 33-Foot Rotor,
h=.399, P=1.35, =Uu.57. r/R = .596
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Figure 100. Blade Flap Bending Moment per Unit 6;g, 33-Foot Rotor,
p = .808, P=2.03, ¥ =L,57, r/R = .217
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Figure 101. Blade Flap Bending Moment per Unit 635, 33-Foot Rotor,
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Figure 102. Blade Flap Bending Moment per Unit 6j5, 33-Foot Rotor,
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Figure 103. Blade Flap Bending Moment per Unit 63145, 33-Foot Rotor,
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Figure 109. Blade Flap Bending Moments Per Unit 83., 33-Foot Rotor,
M = .528, P =1.53, v = 4.57. r/R = .596
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Figure 111, Blade Flap Bending Moments Per Unit 91c, 33-Foot Rotor,
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Figure 113. Blade Flap Bending Moments Per Unit 8;. 33-Foot Rotor,
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Figure 116. Blade Residual Flap Bending Moments, 33-Foot Rotor,
B = .399, P=1.35, Y =L.57. r/R = .217
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Figure 117, Blade Residual Flap Bending Moments, 33-Foot Rotor,
W o= .399, P =1.35, ¥ =L.,57. r/R = .596
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Figure 119. Blade Residual Flap Bending Moments, 33-Foot Rotor,
W= .528, P =1.53, v = L.57. r/R = .596
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Figure 121. Blade Residual Flap Bending Moments, 33-Foot Rotor,
W = .808, P=2.03, ¥ = L,57. r/R = .59
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Figure 123, Blade Residual Bending Moments, 33-Foot Rotor,
W= 1.121, P =2.64, v = L.57T. r/R = .596
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CONCLUDING REMARKS

1. A system of linear ordinary differential equations with periocdi-
cally varying conefficients, forced by functions containing oscillation of
the same periond, has been derived to represent the flapping and associated
motions of a hingeless rot r, free-swashplate, free-airframe configuration
operating at advance ratic greater than .3 (4 > .3) and with its ratio of

blade flap frequency to rotor rotation rate greater than 1.3 (P > 1.3).

2. The system of equations has been solved for its steady oscillatory
response to the periodic forcing produced by cyclic pitch, collective pitch
and angle-of-attack, with some of its degrees of freedom suppressed. The
shaft-transmitted moments obtained from the response were resolved into
mean and oscillatory aeroelastic derivatives and approximately agreed with
experimental data reduced and analyzed so as to provide equivalent

derivatives.

3. ©Shaft moment oscillatory aeroelastic derivatives agreed best with
experimental data when the blade natural flap frequency was in the viecinity
of the two-per-revolution excitation, in rotating axes, for the three-blade
rotor and in the vicinity of the three-per-revolution excitation for the

four-blade rotor.

4. Omission of the harmonic components of the coefficients in the
differential equation of vertical motion yielded approximately correct
mean aercelastic derivatives, at all values of flap frequency ratio pro-

vided the advance ratio was less than about .8 (u < .8).

At advance ratio greater than .8 omitting the periodic components of
the coefficients caused the mean aercelastic derivatives to be greatly in

error.

5. In addition to shaft forces, the equations of motion have been
solved for the azimuthal distribution of blade flapping bending moment.

The bending moment distributives were computed for unit values of cyelic
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pitch and compared with experimental distribution deduced from measured

data in an equivalent form.

Despite the fact that blade flap bending moments are sensitive to the
shape of deflection modes employed in the theory, and the theory of this
report used only a single parabolic deflection degree of freedom, bending
moment distributions calculated were quite similar to those deduced from

the experimental data.

Blade root region flap bending was approximated correctly at all tested
values of blade flap frequency ratio (1.3 < P < 5) at advance ratio greater
then .5 (u > .5). Blade outer region bending moments, however, became

realistic only at large values of flap frequency ratio (P > 3).

6. A set of linear ordinary differential equations describing the
in-plane motion of hingeless rotor blade-hub-body-spring system were de-
rived and applied to the 33-foot 3-blade rotor. Theoretical modal char-

acteristics were compared with experimental.

Means of determining the in-plane forcing functions based on the

motions and forces of the vertical equations were discussed.
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